SOURCE WATER ASSESSMENT STUDY AND POTENTIAL CONTAMINANT SOURCES INVENTORY CITY OF BREWTON, ALABAMA PEA RIDGE ROAD WELL



**Prepared For:** 

Yancey E. Lovelace, Mayor City of Brewton, Alabama 1010-A Douglas Avenue Brewton, Alabama 36426

Prepared By: GOODWYN, MILLS & CAWOOD, LLC 2660 East Chase Lane Montgomery, Alabama 36117 April 2021

April 2021

Goodwyn Mills & Cawood, LLC

# **TABLE OF CONTENTS**

| SECTIC                                        | DN I                        | INTRODUCTION                                                                                                                                                                  | page                            |
|-----------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1.1<br>1.2<br>1.3                             | Locatio                     | ction to Source Water Protection<br>on and System Service Area<br>Supply Inventory<br>Table 1.1 General Well Data                                                             | 1<br>1<br>1<br>2                |
| SECTIC                                        | ON II                       | PHYSICAL SETTING                                                                                                                                                              |                                 |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7 | Geolog<br>Hydrog<br>Specifi |                                                                                                                                                                               | 3<br>3<br>3<br>4<br>4<br>5<br>6 |
| SECTIC                                        | ON III DE                   | LINEATION OF SOURCE WATER PROTECTION AREA                                                                                                                                     |                                 |
| 3.1                                           | Source<br>3.1.1<br>3.1.2    | Water Protection Area Delineation<br>Methodology<br>Delineation of Source Water Protection Areas I                                                                            | 7<br>7<br>7                     |
| SECTIC                                        | ON IV PC                    | TENTIAL CONTAMINANT SOURCE INVENTORY                                                                                                                                          |                                 |
| 4.1<br>4.2                                    | 4.2.1 Lis                   | se<br>Table 4.1 Land Use Inventory for Well Number 6<br>al Contaminant Source Inventory<br>t Review<br>eld Reconnaissance<br>Table 4.2 Potential Contaminant Source Inventory | 8<br>8<br>9<br>9<br>11<br>12    |
| SECTIC                                        | ON V LIM                    | IITATIONS                                                                                                                                                                     |                                 |
| 5.1                                           | Limitati                    | ons                                                                                                                                                                           | 13                              |
| SECTIC                                        | ON VI CE                    | RTIFICATIONS                                                                                                                                                                  |                                 |
| 6.1                                           | Certific                    | cation                                                                                                                                                                        | 14                              |

April 2021

# TABLE OF CONTENTS cont'd

#### SECTION VII REFERENCES

7.1 References

#### **APPENDICES**

- A. Boring Logs, Geophysical Logs, Well Schematics, and Water Quality Data
- B. Pump Test Data and Aquifer Test Analysis
- C. Community System Susceptibility Analysis Sheet

# ATTACHMENTS

#### Sheets

- 1. Location of City of Brewton Pea Ridge Road Well
- 2. Geologic Map in the vicinity of Pea Ridge Road Well
- 3. Generalized Geologic Cross Section
- 4. Potentiometric Surface Map of the Lisbon aquifer in 2018
- 5. Source Water Protection Area I and Potential Contaminant Sources

page

0

# SECTION I INTRODUCTION

# 1.1 Introduction to Source Water Protection

The 1986 amendment to the Safe Drinking Water Act requires public water supply systems to delineate source water zones around public water supply wells and to identify potential contaminant sources within the delineated areas. In response to the amendment, the Alabama Department of Environmental Management (ADEM) adopted regulations that became effective January 2, 1996. The regulations are contained in the ADEM's Administrative Code Division 7, "Water Supply Program". The intent of the regulations is to protect public health by minimizing the introduction of contamination into the source water supply.

The source water assessment area (SWAA) boundary delineation is based on the type of aquifer from which a particular well, well field, or spring produces ground water. Either time-of-travel (TOT), flow boundaries, or a predetermined radius will determine the criteria for delineation of a particular SWAA. The aerial extent of the SWAA's boundaries is dependent on the well depth, pumping rate, and characteristics of the aquifer. A delineated area is valid for a single pumping rate. Where the SWAA is estimated based on time-of-travel, an increase or decrease in the well pumping rate will have a direct impact on the size of the SWAA.

# 1.2 Location and System Service Area

The City of Brewton is located in west-central Escambia County, Alabama, in the south-eastern part of the state. There are approximately 5,200 residents. The Water Works Board of the City of Brewton serves the residents of Brewton, and areas in the immediate vicinity of the City. The system currently has 3,420 meters, 85% of which are residential. The average daily demand is 1.2 million gallons per day, and the peak demand is 2.4 million gallons per day.

# 1.3 Water Supply Inventory

The existing water system consists of approximately 87-miles of distribution lines, 6 elevated water storage tanks with a capacity of 2,275,000 gallons, and 5 deep supply wells (Sheet 1). The 5 wells are capable of producing 2,900 gallons per minute (1,740,000 in 10 hours). Average daily production is 1,300,000 gallons per day. The City shares emergency connections with the East Brewton and McCall water systems.

In 2020, the City of Brewton contracted with the Donald Smith Company to construct a new supply well. The new well (Pea Ridge Road Well) is located approximately 4 miles northwest of Brewton on Pea Ridge Road (Sheet 1). It is cased to a depth of 654 feet, and has 135 feet of screens set from 654 to 715, 741 to 783, and 855 to 890 feet below land surface.

Goodwyn Mills & Cawood, LLC

April 2021

| Public                                                                                                                                                                                                                            |                                              | Tal                              | ole 1.1 Gene               | ral Well Data                                    |                                |                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------|--------------------------------------------------|--------------------------------|-------------------------------------------------------|
| Water<br>Supply<br>Well                                                                                                                                                                                                           | <sup>1</sup> Location                        | Surface<br>Elevation<br>(FT MSL) | Total<br>Depth<br>(FT BGS) | Screened<br>Interval<br>(FT BGS)                 | Permitted<br>Capacity<br>(GPM) | <sup>3</sup> Aquifer                                  |
| Well No. 1<br>ALCO<br>Well                                                                                                                                                                                                        | 31º 06' 08"<br>087º 05' 06"                  | 162                              | 731                        | 600 - 650<br>691 - 721                           | 750                            | Lisbon                                                |
| Well No. 2<br>Hospital<br>Well                                                                                                                                                                                                    | 31º 07' 32"<br>087º 04' 23"                  | 151                              | 665                        | 517 - 537<br>560 - 590<br>641 - 661              | 650                            | Lisbon                                                |
| Well No. 3<br>N. Tank<br>Well                                                                                                                                                                                                     | 31º 09' 27"<br>087º 03' 45"                  | 200                              | 785                        | 570 - 590<br>620 - 640<br>666 - 681<br>710 - 770 | 900                            | Lisbon and<br>Gosport<br>Sand                         |
| Well No. 4<br>Industrial<br>Park Well                                                                                                                                                                                             | <sup>2</sup> 31° 05' 28.0"<br>087° 06' 48.4" | 167                              | 505                        | 434 - 505                                        | 300                            | Crystal<br>River<br>(Moodys<br>Branch)<br>Formation   |
| Well No. 5<br>Ridge<br>Road Well                                                                                                                                                                                                  | <sup>2</sup> 31° 06' 55.7"<br>086° 56' 06.4" | 119                              | 580                        | 540 - 580                                        | 300                            | Lisbon and<br>Gosport<br>Sand                         |
| Proposed<br>Well No. 6<br>Pea Ridge<br>Road Well                                                                                                                                                                                  | <sup>2</sup> 31° 07' 44.8"<br>087° 07' 07.2" | 242                              | 900                        | 654 - 715<br>741 - 783<br>855 - 890              | 1,000 *                        | Moodys<br>Branch LS,<br>Lisbon and<br>Gosport<br>Sand |
| <sup>1</sup> Located and mapped by Castleberry and others, 1989; <sup>2</sup> Located by GMC 2021; Ft MSL – feet<br>in mean sea level; Ft BGS – feet below ground surface; GPM – gallons per minute; * proposed<br>permitted rate |                                              |                                  |                            |                                                  |                                |                                                       |

#### SECTION II PHYSICAL SETTING

#### 2.1 Climate

Long term, average climatic data for Escambia County are available from the weather station in Brewton, Alabama (Brewton 3 SSE, accessed April 1, 2021 athttps://nowdata.rcsc-acis.org/). For the period of record from 2000 to 2014, the annual average temperatures ranged between 49 degrees F in January and 82 degrees F in July and August. Mean monthly temperature extremes ranged from 27 degrees in January 2003 to 98 degrees F in July 2007. Average annual precipitation was about 58.7 inches. Rainfall is fairly uniformly distributed, with mean monthly rainfall varying between 5 and 6.5-inches per month. However, the months of May, October and November are drier. Mean monthly rainfall during those months is 3.5 to 4.5 inches, a reduction of about 25-30-percent. Remnants of hurricanes occasionally move through the area and result in one to three days of extremely heavy rainfall.

# 2.2 Physiography

Most of Escambia County is located in the Southern Pine Hills physiographic district of the East Gulf Coastal Plain physiographic section of South Central Alabama (Sapp and Emplaincourt, 1975). The Southern Pine Hills district is characterized by uplands to the north with relief of up to 250 feet. It slopes gradually to the south where relief is less than 100 feet. The land surface ranges from 35 to 400 feet above sea level. Drainage is westward to the Alabama River, and southward to the Conecuh and Yellow Rivers.

#### 2.3 Surface Drainage

Pea Ridge Road is built along a drainage divide. Areas along the southwestern side of the Pea Ridge Road drain towards the Conecuh River proper and its tributaries; areas northeast of Pea Ridge Road drain towards Burnt Corn Creek and its tributaries. Burnt Corn Creek flows south to its confluence with Murder Creek. Murder Creek flows southwest to its confluence with the Conecuh River. The Conecuh River flows south-southwest and crosses the State line near Jay, Florida where it is renamed the Escambia River.

# 2.4 Geologic Setting

The sediments of the Alabama Coastal Plain form a seaward thickening wedge of clastic and carbonate deposits that dip south to southwest between 20 and 40 feet per mile (Davis, 1987). The northern extent of the Coastal Plain sediments forms a curvilinear band across Alabama. The geologic units beneath Brewton consist of the Citronelle Formation of Pliocene-Pliestocene age, the Miocene Series undifferentiated beneath that, and sediments of the Tertiary system at depth (Szabo and Copeland, 1988). The Citronelle Formation is composed of reddish-brown quartz sand and gravel with beds of varicolored clay. The thickness of the Citronelle Formation in Escambia County ranges from 5-50 feet (Castleberry and others, 1989). Sediments of the Miocene Series underlie the Citronelle Formation. The Miocene sediments in Escambia County are composed of up to 650 feet of sand, silt, clay, gravel, and sandstone. Beneath the Miocene sediments are limestone,

sand, clay, and silts of the Tertiary system (Moodys Branch/Crystal River Formation; Gosport, Lisbon, and Tallahatta Formations).

# 2.5 Hydrogeologic Setting

There are no major aquifers in the Citronelle Formation in Escambia County (Castleberry and others, 1989). Some lower capacity wells completed in the Citronelle Formation are used for domestic supply and for livestock (Cagle and Newton, 1963). The Citronelle aquifer is hydraulically connected to the underlying Miocene Series and is considered to be part of the Pliocene-Miocene aquifer (Gillett and others, 2004).

The Pliocene-Miocene aquifer is the major source of water for the City of Atmore and the western part of Escambia County. Although thick clay beds may be drilled at individual well sites, available data indicate that the clay units are not continuous over a county wide scale. The entire sequence of sand and gravel in the Miocene Series probably responds to pumping as one unit. Wells completed in the Miocene sediments produce from 50 to 500 gal/min (Castleberry and others, 1989).

The City of Brewton is supplied with public water from 5 wells completed in the Lisbon aquifer. Permeable layers of limestone, sand, and gravel in the Moodys Branch, Crystal River Formation, and the Lisbon, Gosport, and Tallahatta Formations comprise the Lisbon aquifer in central Escambia County. The Lisbon aquifer is well confined by overlying layers of clay and limestone. The primary recharge area for the Lisbon aquifer is many miles north of Brewton in Conecuh County where the formations are exposed at land surface. Some groundwater does move downward from overlying sediments, but vertical flow of groundwater is impeded by layers of low-permeability clay and limestone. Large, long-term withdrawals of ground water have probably resulted in the lowering of the potentiometric surfaces of the Lisbon aquifer.

# 2.6 Specific Capacity Test and Estimation of Hydraulic Parameters

Well Number 6 is completed in the Lisbon aquifer (Sheet 3). Geophysical logs, lithologic sample description, and water-level data indicate the aquifer is confined at this location. The production well was test pumped on 8/14-15/2020 at 1,000 gallons per minute for 29 hours. The pumping rate was then increased to 1,500 gallons per minute for 9 hours. The recovery of the water level in the well after the pump was shut down was monitored for 12 hours. Water-level changes during the pump test due to barometric pressure change were not corrected for as the barometric correction was significantly less that the magnitude of water-level change resulting from pumping.

The specific capacity of the well was estimated to be 9.34 gallons per minute per foot of drawdown at 1,000 gallons per minute. The hydraulic conductivity of the Lisbon aquifer at well number 6 was estimated to be about 35 ft/d using a simple straight-line analyses of the drawdown data (Lohman, 1979). The equivalent transmissivity of the aquifer is about 4,700 ft<sup>2</sup>/d. The storage coefficient cannot be estimated from single well tests, but should be on the order of 0.0001 (Lowman, 1979, p. 53).

# 2.7 Potentiometric Surface Maps

A potentiometric surface map is intended to represent the pressure surface in a confined aquifer. As explained in detail by Freeze and Cherry (1979), the concept of a potentiometric surface is "rigorously" valid only for horizontal flow in horizontal aquifers. The pressure surface within a confined aquifer will vary vertically, unless the aquifer materials are homogeneous, isotropic, and the hydraulic conductivity of the aquifer material is much higher than that of the overlying and underlying confining units. Nonetheless, a properly constructed potentiometric surface map can be used to indicate the direction of ground-water flow within an aquifer.

Potentiometric maps for the Lisbon aquifer have been prepared by the U.S. Geological Survey (Castleberry, Moreland, and Scott, 1989) and the Geological Survey of Alabama (Gillette, Raymond, and Moore, 2004). These maps indicate that the ground-water surface of the Lisbon aquifer in the vicinity of Brewton forms a relatively uniform sloping surface towards the southwest. Ground-water withdrawals for public supply and private use in the vicinity of Brewton have probably lowered the ground-water surface, however, the available water-level data are insufficient to allow mapping of the cone of depression. Previous potentiometric surface maps of the Lisbon aquifer were updated using recent water-level measurements (2018 and 2020) from the City of Brewton wells, and that is presented as Sheet 4.

| Table 2.1 Water-level measurements               |                           |                     |                                      |                                    |                                    |                                              |
|--------------------------------------------------|---------------------------|---------------------|--------------------------------------|------------------------------------|------------------------------------|----------------------------------------------|
| Public Water<br>Supply Well                      | Driller                   | Total Depth<br>(ft) | Static<br>Water<br>Level<br>(ft BLS) | Land Surface<br>Elevation<br>(msl) | Water Level<br>Elevation<br>ft-MSL | Aquifer(s)                                   |
| Well No. 1<br>ALCO Well                          | Layne<br>(1954)           | 731                 | 56.6 (2018)                          | 162                                | 105.4                              | Lisbon                                       |
| Well No. 2<br>Hospital Well                      | Layne<br>(1948)           | 665                 | 26 (2018)                            | 151                                | 125                                | Lisbon                                       |
| Well No. 3<br>N. Tank Well                       | Layne<br>(1974)           | 785                 | 51 (2018)                            | 200                                | 149                                | Lisbon and<br>Gosport Sand                   |
| Well No. 4<br>Industrial<br>Park Well            | Griner<br>(1994)          | 505                 | 124(2018)                            | 167                                | 43                                 | Moodys<br>Branch/Crystal<br>River Formation  |
| Well No. 5<br>Ridge Road<br>Well                 | Griner<br>(1997)          | 580                 | +12(2018)                            | 118                                | 130                                | Lisbon and<br>Gosport Sand                   |
| Proposed<br>Well No. 6<br>Pea Ridge<br>Road Well | Donald<br>Smith<br>(2020) | 900                 | 124.8                                | 242                                | 117.2                              | Moodys Branch,<br>Lisbon and<br>Gosport Sand |

## SECTION III SOURCE WATER PROTECTION AREA

#### 3.1 Source Water Protection Area Delineation

#### 3.1.1 Methodology

The Source Water Assessment Area was delineated by the methodologies set forth in ADEM Administrative Code. Well Number 6 is developed within a porous flow aquifer with a casing depth of 654 feet below land surface. The ADEM Administrative Code 335-7-15-.04 states that the SWPA I may be established as a 400 foot fixed radius, and SWPA II is not required.

#### 3.1.2 Delineation of Source Water Protection Area I

A fixed 400-foot radius around the wellhead was established to delineate the SWAA I for Well Number 5. The SWAA I is illustrated on Sheet 5.

April 2021

# SECTION IV POTENTIAL CONTAMINANT SOURCE INVENTORY

#### 4.1 Land Use

Land use within the SWAA is primarily forested and undeveloped land. Table 4.1 lists a summary of major land uses within SWPA I.

| Table 4.1 Land use inventory for W        | ell Number 6 |
|-------------------------------------------|--------------|
| Land Use/Activity                         | SWPA Area I  |
| Percent owned/controlled by your system   | 0.25         |
| Percent sewered                           | 0            |
| Percent Timberland/Undeveloped            | 96           |
| Percent agriculture (pasture)             | 0            |
| Percent Industrial                        | 0            |
| Percent residential                       | 0            |
| Percent Lakes and Streams                 | 0            |
| Percent Commercial                        | 0.75         |
| Airport (w/fueling system)                | 0            |
| Hazardous waste facility                  | 0            |
| General Manufacturing                     | 0            |
| Pesticide manufacturing                   | 0            |
| Wood preservative manufacturing           | 0            |
| Chemical manufacturing                    | 0            |
| Petroleum storage tank farm               | 0            |
| Approximate Linear Feet of Sanitary Sewer | 0            |
| Number of septic systems                  | 0            |
| Residential sites (homes)                 | 0            |
| Roads (number of miles)                   | 0.14         |
| Dry Cleaners                              | 0            |
| Auto repair/gas stations                  | 0            |
| Furniture stripping                       | 0            |
| Machine shop/metal working                | 0            |
| Photo labs/printers                       | 0            |
| Junkyard                                  | 0            |
| Landfill                                  | 0            |
| Parking areas                             | 0            |
| Mining                                    | 0            |
| Underground fuel storage tank             | 0            |
| Wells                                     | 1            |
| Percent Transportation Corridors          | 3            |

## 4.2 Potential Contaminant Source Inventory

The potential contaminant source inventory was compiled using several sources and methods. Public information available from EPA and ADEM were obtained from the Environmental First Search Technology Corporation. Additional information was obtained from the ADEM UST Release Incident List, and the ADEM Land Division Website. A field reconnaissance of the SWPA area was performed. ADEM and EPA sources are listed by classification in section 4.2.1. Additional sources are listed in section 4.2.2. All inventoried sources are listed in Table 4.2, and located on Sheet 5 by Map ID number.

# 4.2.1 List Review

Records from the U.S. Environmental Protection Agency (EPA) and the Alabama Department of Environmental Management (ADEM) were reviewed for evidence of previous contamination episodes. The following lists were reviewed:

1. U.S. EPA National Priorities List (NPL) (Updated November 2020) NPL - a list of sites designated as needing long-term remedial cleanup.

No evidence of a listing in the study area.

2. U.S. EPA Comprehensive Environmental Response Compensation and Liability Information System List (CERCLIS) (Updated November 2020) CERCLIS - a database maintained by U.S. EPA and the states which lists sites where releases have either been addressed or need to be addressed for Superfund investigation of onsite contamination.

No evidence of a listing in the study area.

3. Resource Conservation and Recovery Act (RCRA) Notifiers List of Generators (From State of Alabama Data Base) (Updated January 2021) RCRA - regulates materials and hazardous wastes generated, treated, stored, disposed or distributed by industrial facilities.

No evidence of a listing in the study area.

4. Federal Emergency Response Notification System (ERNS) List (Updated February 2021) ERNS – EPA's list of reported CERCLA hazardous substance releases or spills in quantities greater than the reportable quantity, as maintained at the National Response Center.

No evidence of a listing in the study area.

5. Alabama Commercial Treatment, Storage & Disposal Facilities (TSDF) for State of Alabama (Updated January 2021) TSDF- a facility regulated under RCRA that treats, stores, and/or disposes of

hazardous wastes.

No evidence of a listing in the study area.

6. Alabama Hazardous Substance Cleanup Fund (AHSCF) List (Updated January 2020) AHSCF - State list of hazardous waste sites identified for investigation or remediation (NPL and CERCLIS equivalents)

No evidence of a listing in the study area.

# 5. State Landfill List

#### 8.a. State Permitted Sanitary Landfills (Updated January 2021)

State Permitted Sanitary Landfill - a municipal solid waste landfill that receives household waste.

No evidence of a listing in the study area.

# 8b. State Permitted Construction/Demolition Landfills, and Permitted Sanitary Landfills Downgraded to Construction/Demolition Landfills, and/or Industrial Landfills (Updated January 2021)

Construction/Demolition Waste - waste building materials, packaging, and rubble resulting from construction, remodeling, repair, or demolition operations on pavements, houses, commercial buildings, and other structures. Such wastes include, but are not limited to, masonry materials, sheet rock, roofing waste, insulation (not including asbestos) rebar, scrap metal, paving materials, and wood products. Uncontaminated concrete, soil, brick, rock and similar materials are excluded from the definition.

Industrial Landfill - non-hazardous industrial waste excluding sanitary waste.

No evidence of a listing in the study area.

#### 8. Leaking Underground Storage Tank (LUST) List (Updated March 2021)

LUST - leaking tanks that store "regulated substances" including hazardous chemical products regulated under CERCLA and petroleum products, and that are more than 10% below the surface of the ground.

No evidence of a listing in the study area.

#### 9. Registered Underground Storage Tank (UST) List (February 2021)

UST - one or more tanks, including underground connective piping, that store regulated substances, and are more than 10% below the surface of the ground. Regulated substances include hazardous chemical products regulated under CERCLA and petroleum products.

No evidence of a listing in the study area.

## 4.2.2 Field Reconnaissance

A reconnaissance of the SWPA was conducted. Each potential contaminant source was logged, and surveyed with a Global Positioning System (GPS).

| Map I.D. | Name/Location                                                                                           | Phone #                   | Lat./Long.                     |
|----------|---------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|
| 1        | Belly Tank for emergency<br>City of Brewton<br>1010A Douglas Ave<br>Brewton, Alabama 36426              | generator<br>251-809-1784 | 31° 07' 48.2"<br>87° 07' 07.9" |
| 2        | Pea Ridge Road<br>Escambia County<br>Engineering and Road Dep<br>P.O. Box 848<br>Brewton, Alabama 36427 | 251-867-0236<br>partment  | N/A                            |

Goodwyn Mills & Cawood, LLC

| Map Number and<br>Facility ID | Physical Address | Coordinates                    | ADEM ID<br>Code | Remarks                                  |
|-------------------------------|------------------|--------------------------------|-----------------|------------------------------------------|
|                               |                  | SWPAI                          |                 |                                          |
| 1. Brewton Utilities          | County Road 41   | 31° 07' 48.2"<br>87° 07' 07.9" | 63              | Belly Tank for<br>Emergency<br>Generator |
| 2. Pea Ridge Road             | N/A              | N/A                            | 55              | Transportation<br>Corridor               |

# SECTION IV LIMITATIONS

# 6.1 Limitations

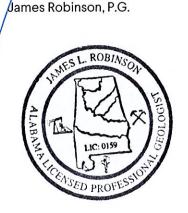
**GMC** has performed this investigation for the exclusive use of the client, their lending institution and their legal counsel specifically for the subject sites. **GMC** prohibits publication or reuse of any report without **GMC** prior written consent.

The conclusions contained in this report are based upon the condition at the site during the time of investigation.

The information contained in this report was compiled from both field observations made by **GMC** and records review of published and unpublished data. **GMC** cannot be held liable for the accuracy of the data presented in the public and private documents reviewed

The only warranty made by **GMC** concerning the services provided are that we have used the degree of skill and care ordinarily exercised by similarly situated professionals in our locality. No other warranty, expressed or implied, is made or intended.

**GMC** will not be required to sign any documents, no matter by whom requested, that would result in **GMC** having to certify, guarantee or warrant the existence or character of conditions that **GMC** cannot ascertain. The CLIENT also agrees not to make resolution of any dispute with **GMC** or payment of any amount due to **GMC** in any way contingent upon **GMC** signing any such certificate.


#### SECTION VI CERTIFICATION

# 6.1 Certification

This Source Water Protection Area Delineation and Potential Contaminant Source Inventory were conducted in accordance with standard geologic and engineering practices consistent with similarly situated environmental professionals in this area. All information collected was reviewed and the collecting of information was overseen by either a geologist, hydrogeologist or engineer experienced in subsurface investigation. The information submitted herein, to the best of my knowledge and belief is, true, accurate, and

complete. am

Date



## SECTION VII REFERENCES

#### 7.1 References

Adams, G.I., Butts, Charles, Stephenson, L.W., and Cooke, Wythe, 1926, Geology of Alabama: Geological Survey of Alabama Special Report 14.

Alabama Department of Environmental Management, 2019, Source Water Assessment Program: ADEM Administrative Code R.335-7-15.

Cagle, Joseph, and Newton, John, 1963, Geology and ground-water resources of Escambia County, Alabama: Geological Survey of Alabama Bulletin 74.

Castleberry, R.D., Moreland, R.S., and Scott, J.C., 1989, Geohydrology and susceptibility of major aquifers to surface contamination in Alabama; Area 11: U.S. Geological Survey WRIR 88-4107.

Davis, M.E., 1987, Stratigraphic and hydrogeologic framework of the Alabama Coastal Plain: U.S. Geological Survey WRIR 87-4112.

Donald Smith Company, Inc., 2020, City of Brewton, Alabama, Pea Ridge Road well Completion records.

Fetter, C.W., Jr., 1980, *Applied Hydrogeology*: Charles E. Merrill Publishing Company, Columbus, Ohio, 488 p.

Freeze, R.A., and Cherry, J.A., 1979, *Groundwater*: Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 604 p.

Gillette, Blakeney, Raymond, D. E., and Moore, J.D., 2004, Hydrogeology and vulnerability to contamination of major aquifers in Alabama: Area 11: Geological Survey of Alabama Circular 199 E.

Lowman, S.W., 1979, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708.

Sapp, C.D., and Emplaincourt, J., 1975, Physiographic regions of Alabama: Geological Survey of Alabama Map 168.

Szabo, M.W., and Copeland, C.W., Jr., 1988, Geologic Map of Alabama, Southwest sheet: Geological Survey of Alabama Special Map 220, 1:250,000 scale.

U.S. Department of Agriculture Soil Conservation Service, 1995, State of Alabama hydrologic unit map with drainage areas by counties and sub-watersheds.

U.S. Geological Survey, 1974, Hydrologic unit map – State of Alabama, U.S. Geological Survey unnumbered report, 1:500,000 scale.

U.S. Geological Survey, 1960, Brewton North, Alabama 7.5-minute topographic quadrangle, photorevised 1986, 1:24,000 scale.

## SECTION VII REFERENCES

U.S. Geological Survey, 1960, Brewton South, Alabama 7.5-minute topographic quadrangle, photorevised 1986, 1:24,000 scale.

U.S. Geological Survey, 1960, Pollard, Alabama 7.5-minute topographic quadrangle, photorevised 1986, 1:24,000 scale.

U.S. Geological Survey, 1960, Wallace, Alabama 7.5-minute topographic quadrangle, photorevised 1986, 1:24,000 scale.

Wait, R.L., and Davis, M.E., 1986, Configuration and hydrology of the Pre-Cretaceous rocks underlying the Southeastern Coastal Plain aquifer system: U.S. Geological Survey WRIR 86-4010, 1 plate.

# APPENDIX A

Boring Logs, Geophysical Logs, Well Schematics, and Water Quality Data

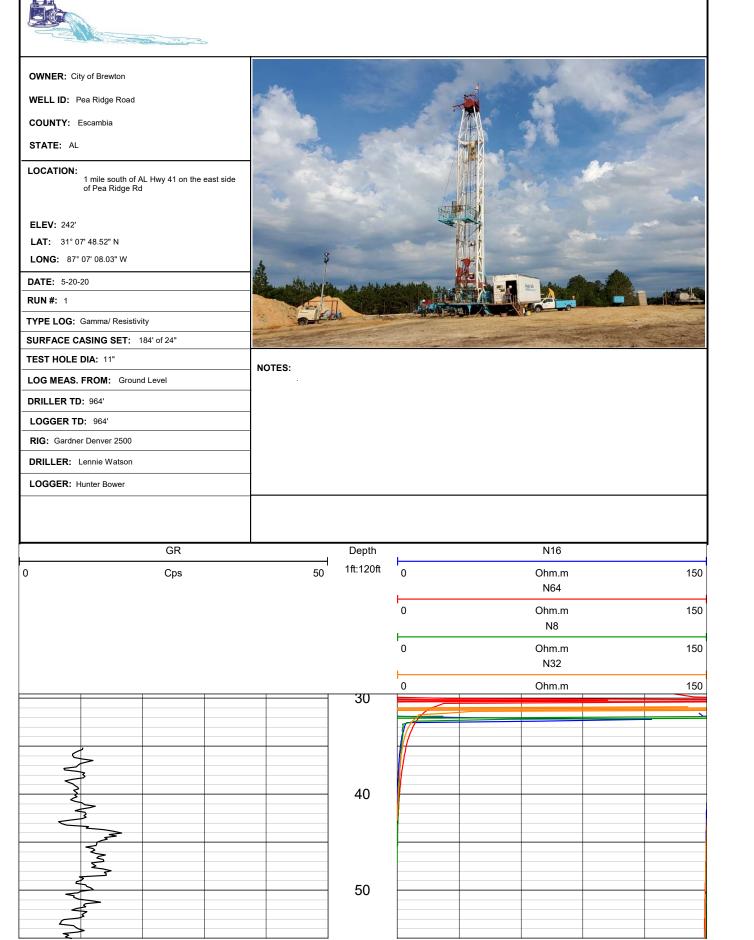
| Depth Interval<br>(FT BLS) | Lithology from sample bags with depths adjusted by E-Log                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 10                     | <b>Sand</b> , dark yellowish orange (10YR6/6), very fine to medium grained, rounded to subrounded, quartz, silty, some clay.                                                                                             |
| 10 - 20                    | <b>Sand</b> , light brown (5YR6/4), very fine to medium grained, subrounded, some quartz granules, whiye, yellow, red, silty.                                                                                            |
| 20 - 30                    | <b>Sand</b> , light brown (5YR6/4), as above, mixed with very light gray clay (N7), some limonite sandstone, moderate reddish brown (10R4/6) to dark reddish brown (10R3/4).                                             |
| 30-40                      | Sand, as above, mixed with more abundant clay, as above, some grayish green $(5G5/2)$ clayey sand.                                                                                                                       |
| 40 - 60                    | <b>Sand, as above, less clay</b> , more granules, some pale red purple (5RP 6/2) clay, soft, sandy.                                                                                                                      |
| 60 - 70                    | <b>Sand</b> , pale yellowish brown (10YR6/2) to grayish orange (10YR7/4), medium to very fine grained, subrounded to rounded, chert gravel, angular and blocky, clay, very light gray (N7), grayish red (10R4/2), silty. |
| 70 - 80                    | <b>Sand,</b> moderate yellowish brown (10YR5/4), very fine to medium grained, rounded to subrounded, clay, moderate reddish brown (10R4/6), very light gray (N7), soft, sandy, silty.                                    |
| 80 - 93                    | <b>Sand</b> , grayish orange (10YR7/4), very fine to very coarse grained, rounded to angular, some granules, angular, clean, trace silt.                                                                                 |
| 93 - 105                   | <b>Clay</b> , very light gray (N7), moderate reddish brown (10R4/6), sandy, silty, firm.                                                                                                                                 |
| 105 – 140                  | <b>Sand</b> , grayish orange (10YR7/4), medium to coarse grained, subrounded, some granules, angular, some sity.                                                                                                         |
| 140 - 170                  | Sand, as above, clay as above, becoming more clayey with depth.                                                                                                                                                          |

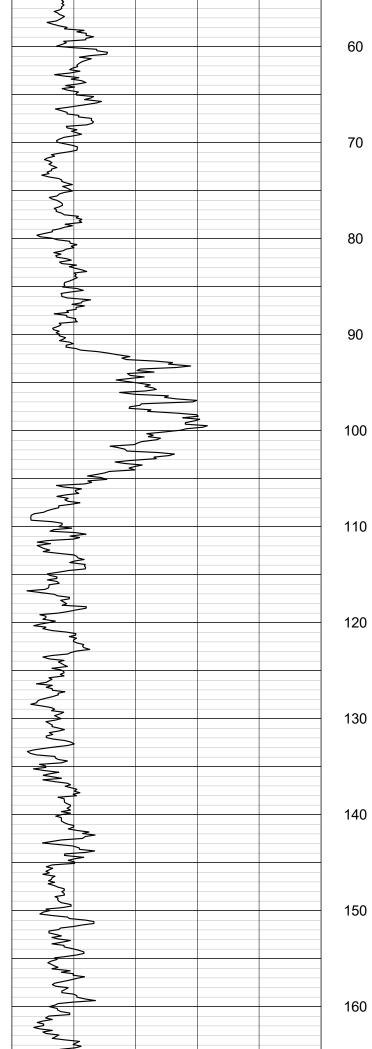
| Depth Interval<br>(FT BLS) | Lithology from sample bags with depths adjusted by E-Log                                                                                                                           |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 170 - 184                  | <b>Sand, medium gray (N5) to light olive green (5Y6/1),</b> very fine to fine grained, rounded, abundant clay and silt, gravel washout.                                            |
| 184 - 216                  | Clay, medium gray (N5), soft, sandy.                                                                                                                                               |
| 216 - 220                  | <b>Sand</b> , grayish orange (10 YR 7/4), very fine to medium grained, subrounded, clay washout as above.                                                                          |
| 220 - 230                  | <b>Sand</b> , pinkish gray (5YR8/1), very fine to coarse grained, rounded to subrounded, mica, 3% dark minerals.                                                                   |
| 230 - 240                  | <b>Sand</b> , grayish orange (10YR7/4), fine to very coarse grained, rounded to angular, gravel up to 0.7 cm, <b>limestone</b> , light gray (N7), firm to brittle, friable, sandy. |
| 240 - 250                  | <b>Sand</b> , grayish orange (10YR7/4), very fine to medium grained, subrounded, silty.                                                                                            |
| 250 - 280                  | <b>Limestone</b> , light gray (N7) to medium gray (N5), firm to brittle, friable, sandy, sand, pinkish gray (5YR8/1), fine grained, rounded.                                       |
| 280 - 292                  | <b>Sand</b> , very light gray (N8), very fine coarse grained, rounded to angular, some gravel, limestone, light (N7) to medium gray (N5), cherty, 10% dark minerals.               |
| 292 - 310                  | Sand and limestone, as above, shale, black, platy.                                                                                                                                 |
| 310 - 320                  | Sand and limestone, as above, shale, black, platy.                                                                                                                                 |
| 320 - 340                  | <b>Limestone</b> , yellowish gray (5Y8/1), cherty, <b>shale</b> , grayish olive (10Y4/2).                                                                                          |
| 340 - 347                  | <b>Limestone</b> , olive gray (5Y3/2), clayey, broken shells, pinkish gray (5YR8/1), very fine grained sand and silt.                                                              |
| 347 - 435                  | <b>Clay</b> , olive gray (5Y4/1), soft and gummy, mixed with shells, traces silt and very fine grained sand.                                                                       |
| 435 - 475                  | Broken shells, medium gray (N5), clay, olive gray (5Y4/1), soft.                                                                                                                   |

| Depth Interval<br>(FT BLS) | Lithology from sample bags with depths adjusted by E-Log                                                                                                                                  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 475 – 482                  | <b>Broken shells</b> and <b>clay</b> , medium gray (N5), silt and traces very fine grained sand.                                                                                          |
| 482 - 520                  | Limestone, medium light gray (N6), blocky, broken shells, sand, very fine grained, rounded, chert, flaky.                                                                                 |
| 520 - 550                  | <b>Shale</b> , medium gray (N5), platy, silty, 20% dark minerals, s <b>and</b> , medium to light gray (N6-N8), very fine to very coarse grained, some chert granules, rounded to angular. |
| 550 - 600                  | Limestone, very light gray (N8), blocky, sand, very fine, as above.                                                                                                                       |
| 600 - 625                  | <b>Limestone</b> , medium light gray (N6), blocky, broken shells, sand, very fine grained, rounded, <b>shale</b> , black (N1) to dark medium dark gray (N4), platy.                       |
| 625 - 655                  | <b>Clay</b> , greenish gray (5GY6/1), silt, sand, pinkish gray, very fine to fine grained, rounded, 5% dark minerals, shale, black, hard.                                                 |
| 655 - 720                  | <b>Sand</b> , yellowish gray (5Y8/1) to light olive gray (5Y6/1), very fine to medium grained, rounded to subrounded, $2 - 10\%$ dark minerals.                                           |
| 720 - 730                  | <b>Sand</b> , pale yellowish brown (10YR6/2), grayish orange (10YR7/4), very fine to medium grained, rounded to subrounded, some coarse grained to gravel size, silt, 1% dark minerals.   |
| 730 - 740                  | <b>Sand</b> , pale yellowish brown (10YR6/2), very fine to fine grained, 1% dark minerals, silt, <b>Clay</b> , greenish gray (5GY6/1), soft.                                              |
| 740 - 760                  | <b>Sand</b> , light olive gray (5Y5/2), very fine to fine grained, rounded, 1% dark minerals, some silt, clean.                                                                           |
| 760 - 770                  | Sand, as above, 3% dark minerals.                                                                                                                                                         |
| 770 - 780                  | <b>Sand</b> , light olive gray (5Y5/2), fine to medium grained, some granules, rounded, 1% <b>shale, black</b> (N1), some silt.                                                           |
| 780 - 785                  | <b>Sand</b> , light gray (N7), very fine to very coarse grained, rounded to angular, clean, less shale and silt.                                                                          |

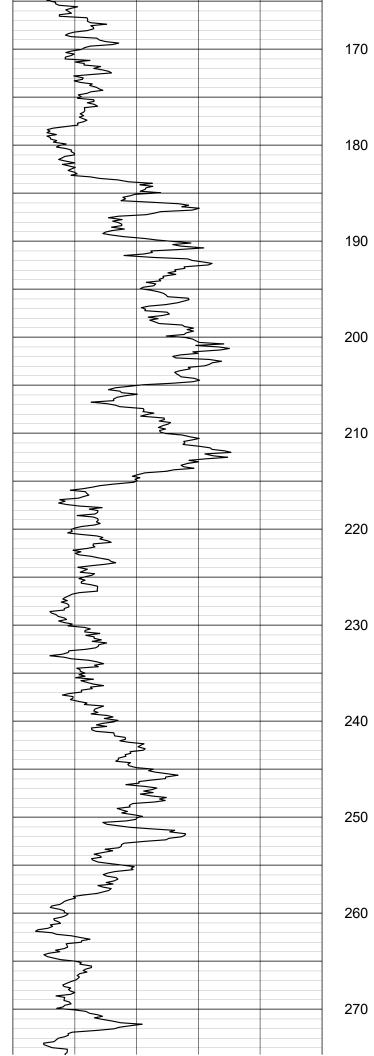
| Depth Interval<br>(FT BLS) | Lithology from sample bags with depths adjusted by E-Log                                                                                 |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 785 - 800                  | <b>Clay</b> , olive gray (5Y4/1), <b>shale</b> , greenish gray (5GY6/1), soft, some <b>sand</b> , very fine grained, rounded to angular. |
| 800 - 810                  | Sandy Clay, olive gray (5Y4/1), sand and shale as above.                                                                                 |
| 810 - 840                  | Clay and shale, olive gray (5Y4/1), shale is platy and firm.                                                                             |
| 840 - 860                  | <b>Sand and shale</b> , light gray to medium gray (N7-N6), sand is fine to medium grained, rounded, 3% dark minerals.                    |
| 860 - 870                  | Sand and shale, very light gray (N8), as above.                                                                                          |
| 870 - 880                  | <b>Sand</b> , yellowish gray (5Y8/1), very fine to fine grained, rounded, 10% dark minerals, silty, <b>shale</b> washout as above.       |
| 880 - 890                  | Sand, as above, some clay.                                                                                                               |
| 890 - 900                  | <b>Sand</b> , yellowish gray (5Y7/2), very fine to very coarse grained, rounded to angular, some granules, <b>shale</b> as above.        |
| 900 - 930                  | Sand, yellowish gray (5Y7/2), very fine grained, rounded, shale as above.                                                                |
| 930 - 940                  | <b>Sand</b> , light olive gray (5Y5/2), very fine to fine grained, rounded, 5% dark minerals, <b>shale</b> as above.                     |

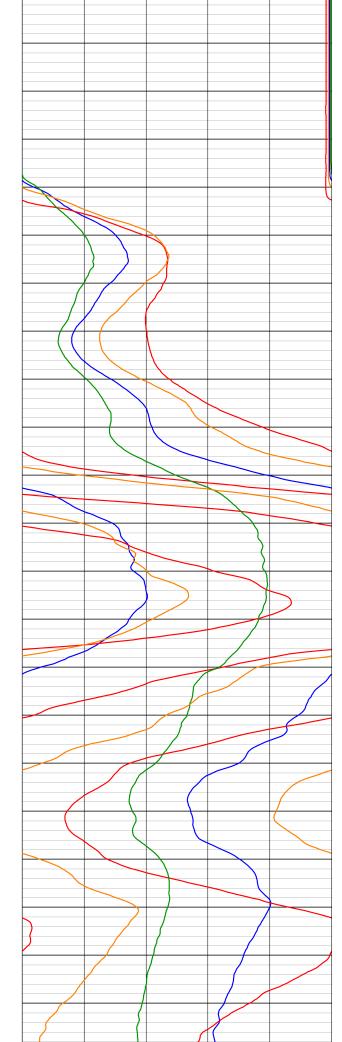


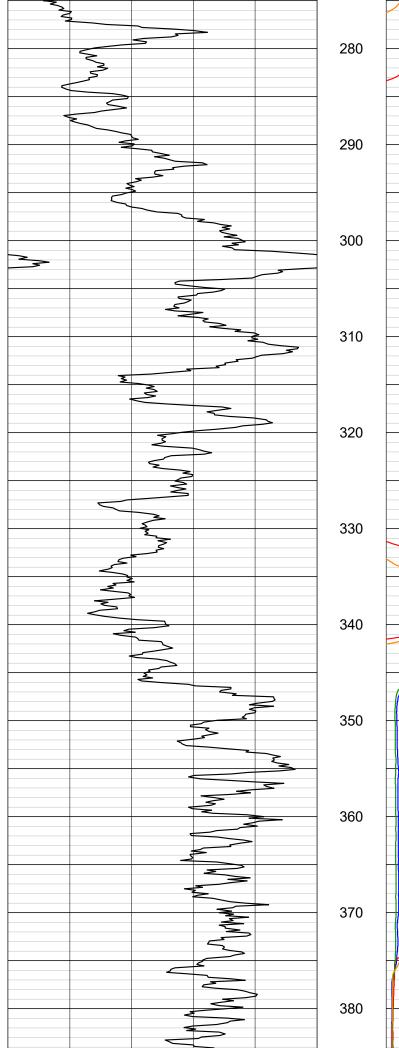

"DRILLING WELLS & PUMPING WATER SINCE 1946"

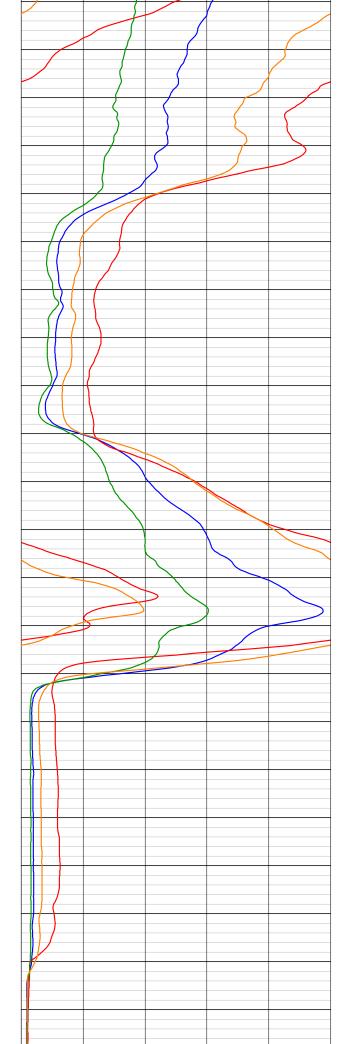

# Headland, AL Office

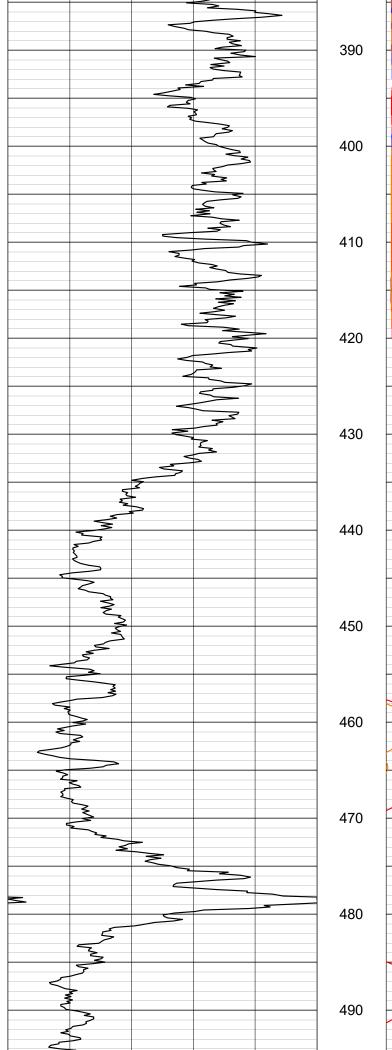
746 E. Main St. Headland, AL 36345 Ph. (334) 693-2969 Fx. (334) 693-3089

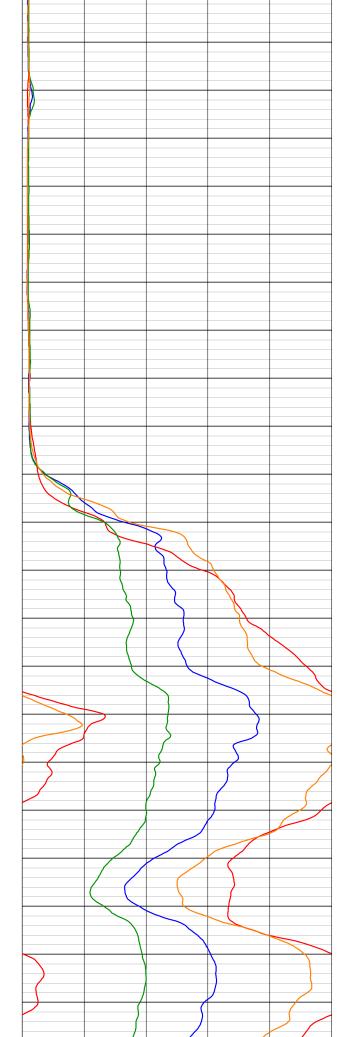

# Shannon, MS Office

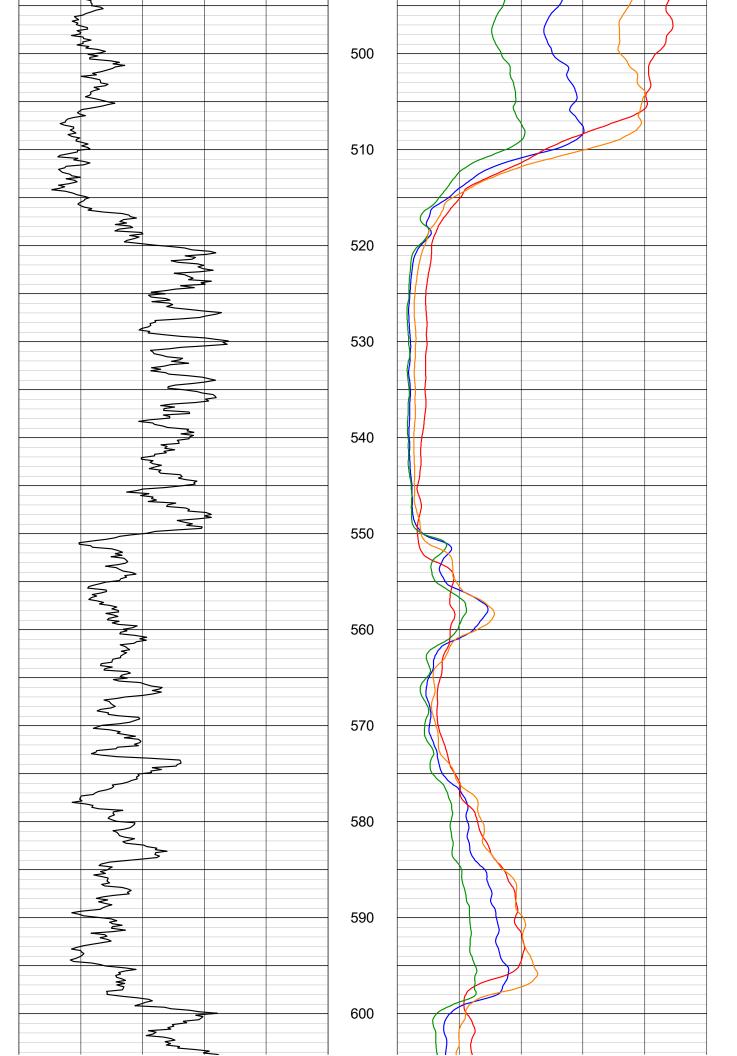

772 Romie Hill Ave. Shannon, MS 38868 Ph. (662) 767-9777 Fx. (662) 767-3107

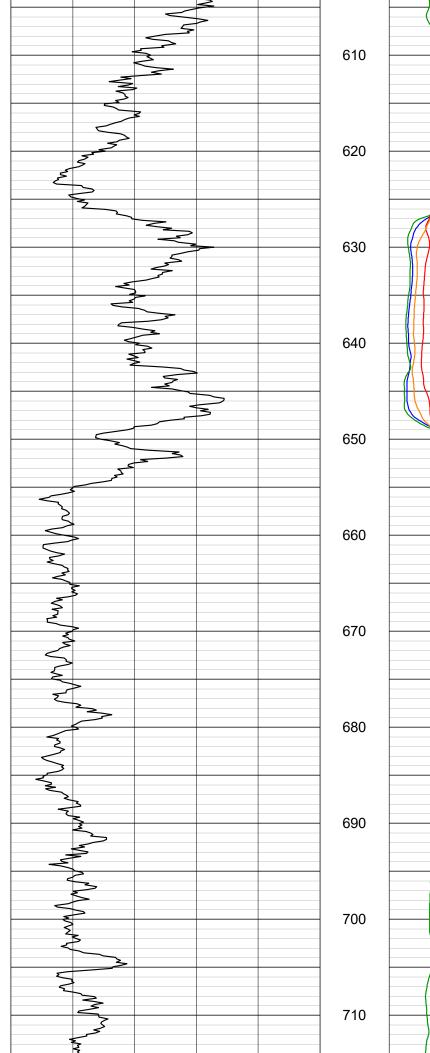


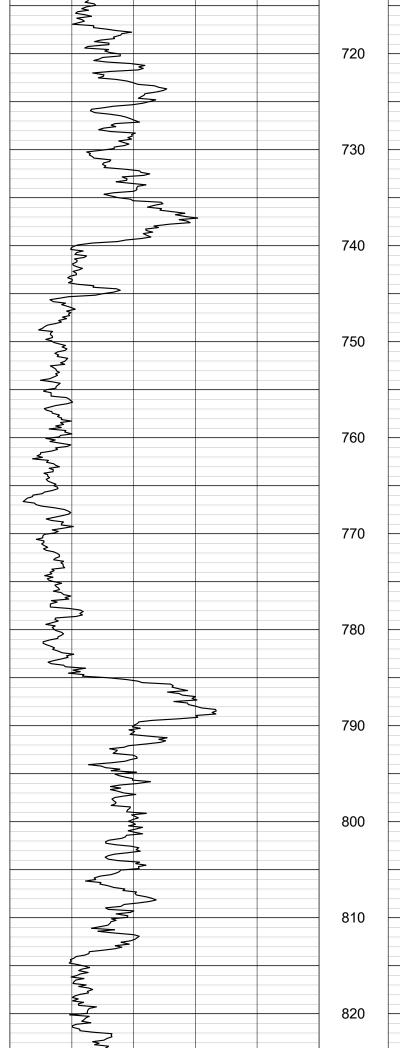



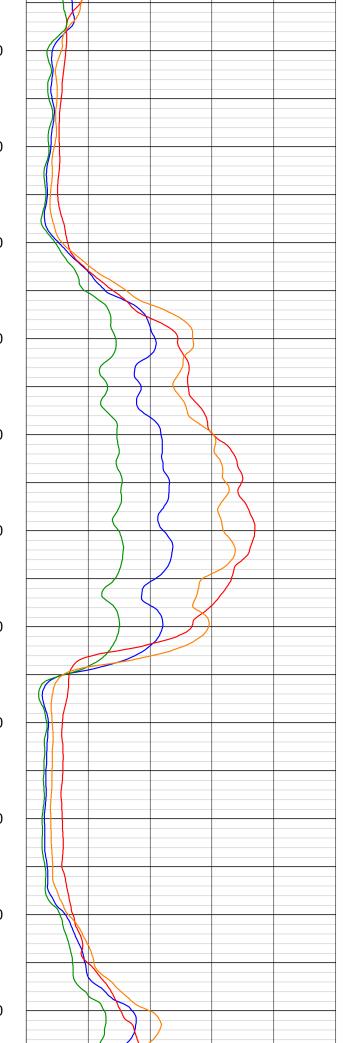



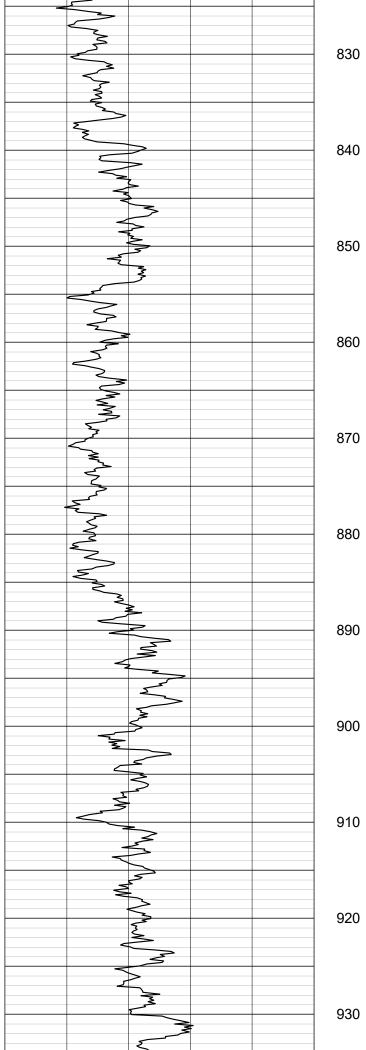



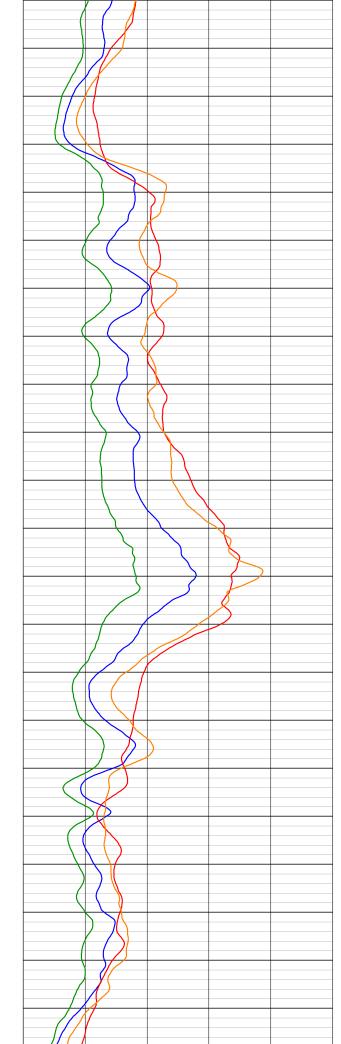



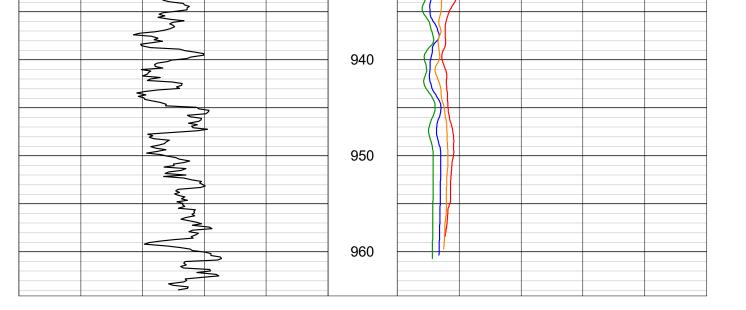


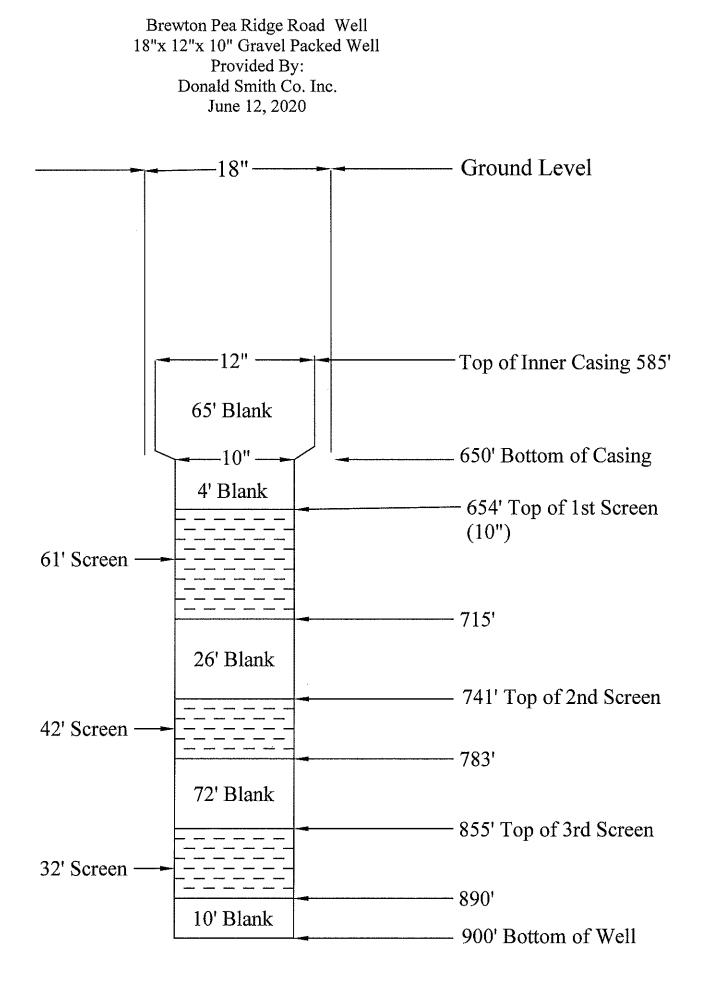












# DS002 Brewton Pea Ridge Road Well Production Well Design and Screen Submittal City of Brewton Brewton, Alabama

# **TABLE OF CONTENTS**

- □ Production Well Design
- □ Screens

Production Well Design



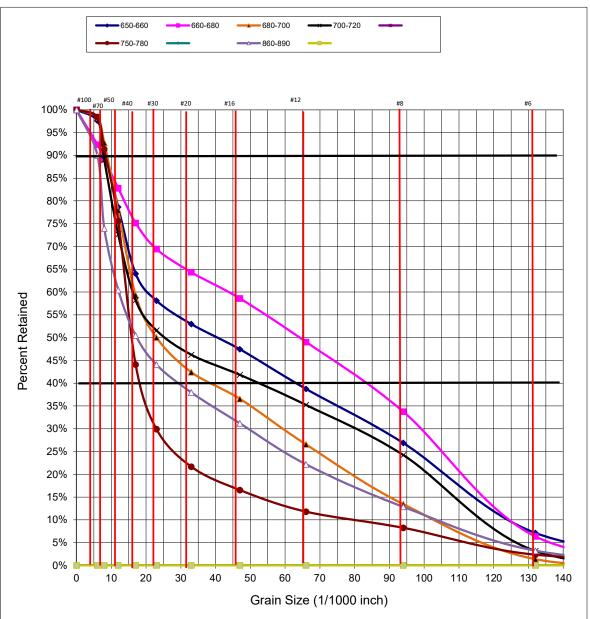
Screens



# Johnson Screens

### WELL SCREEN SUBMITTAL DATA

CLIENT: DONALD SMITH PROJECT: 1000' HIQ CONSTRUCTION


| Material                            |         | 304 Stainless |        |              |
|-------------------------------------|---------|---------------|--------|--------------|
| Nom Size                            | 10      | PS            | 250    | mm           |
| Top x Bottom Fitting Configuration  | WR x WR |               |        |              |
| Estimated Total Well Depth          | 950     | ft            | 290    | meters       |
| Estimated Feet of Screen            | 138     | ft            | 42     | meters       |
| Design Slot Size                    | 0.030   | in            | 0.8    | mm           |
| Approx. Outside Diameter            | 10.84   | in            | 275    | mm           |
| Screen Barrel Inside Diameter       | 10.07   | in            | 256    | mm           |
| Approx. Clear ID at Fittings        | 9.85    | in            | 250    | mm           |
| Approx. Weight Per Ft               | 24      | lbs           | 11     | kg           |
| Wire Width                          | 0.130   | in            | 3.3    | mm           |
| Wire Height                         | 0.250   | in            | 6.4    | mm           |
| Calc. Collapse Strength *           | 356     | PSI           | 25     | kg/sq.cm     |
| Open Area                           | 18.8%   |               |        |              |
| Intake Area                         | 77      | sq.in./ft     | 1,622  | sq.cm./meter |
| Transmitting Capacity-at 0.1 ft/sec | 24      | gpm/ft        | 5      | lps/meter    |
| Support Rod Diam                    | 0.204   | in            | 5.2    | mm           |
| No Rods                             | 56      |               |        |              |
| Cross Sectional Rod Area            | 1.83    | sq.in.        | 11.81  | sq.cm.       |
| Design Yield Strength               | 30,000  | PSI           | 2,109  | kg/sq.cm     |
| Calc.Tensile Strength *             | 38,500  | lbs           | 17,500 | kg           |
| Max.Recomended Hang Wt. *           | 19,200  | lbs           | 8,700  | kg           |
| Column Load *                       | 28,100  | lbs           | 12,700 | kġ           |

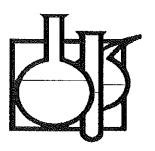
\* A broad range of site conditions and completion methods can impact the physical strength requirements (collapse, tensile, hang weight and column strengths) for a successful screen installation. Consult a Johnson Screens technical representative with questions regarding the parameters presented above as they may relate to your specific site requirements. Final design parameters should be reviewed and confirmed by the customer and his third-party consultants.

Prepared by Waterwell Sales Subject to Aqseptence Group Inc Standard Terms and Conditions. www.jswaterwell.com Johnson Screens 651-636-3900



SAND ANALYSIS




Job Name 8" Test Well Location Brewton Pea Ridge Driller Donald Smith Co. Sample ID 052920-1 Analyzed by: Duvall, Steven Date: 6/1/2020

Casing  $\phi$  8 in Screen  $\phi$  8 in Desired Yield SWL (ft)

Recommended Slot Size 30 slot (0.030") screen from 650'-720', 750'-780' and 860'-890' bgs. Recommended Gravel Pack  $12 \times 20$ 

Based exclusively on the samples provided by the contractor, a sieve analysis graph and suggested screen slot size is provided as requested. Since numerous construction considerations and site circumstances influence successful well completion, Johnson Screens assumes no responsibility for final well performance nor awareness of local regulations pertaining to well installations.

Prepared by:Duvall, Steven

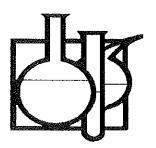


1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone (205) 699-6647 **Toll Free** (866) 729-7211 Fax (205) 699-3882

Page 1 of 2

| Donald Smith Company, Inc.<br>746 East Main Street<br>Headland, AL 36345- | Report Date: 08/21/2020<br>Receive Date: 08/14/2020<br>Receive Time: 8:00 |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Attention: Mr. Eli Bundrick                                               |                                                                           |
| Control No : 2008-00276 Sample # 001                                      | Sample Date: 08/13/2020                                                   |

| Sample | Time: | 17:03 |  |
|--------|-------|-------|--|


| Control No : | 2008-00276    | Sample # 001               |
|--------------|---------------|----------------------------|
| Sampler :    | DB            |                            |
| Sample ID:   | Brewton Peari | dge Production Well- PFO's |

### Laboratory Certificate

| PARAMETER                   | REOULIO  | UNITS | ANALYST | DATE       | TIME  | METHOD    | REF |
|-----------------------------|----------|-------|---------|------------|-------|-----------|-----|
| PFA's Method 537.1 DW       |          |       | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| 1CI-PF3OUdS                 | <0.0015  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| CI-PF3ONS                   | <0.0011  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| ADONA                       | <0.00069 | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| IFPO-DA                     | <0.0016  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| IEtFOSAA                    | <0.00088 | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| IMeFOSAA                    | <0.0015  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorobutanesulfonic Acd | <0.00063 | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorodecanoic Acid      | <0.0019  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorohexanoic Acid      | <0.0012  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorododecanoic Acid    | <0.0014  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluoroheptanoic Acid     | <0.00096 | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorohexanesulfonic Acd | <0.0007  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorononanoic Acid      | <0.0019  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluoroctanesulfonic Acid | <0.0011  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorooctanoic Acid      | <0.00083 | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorotetradecanoic Acid | <0.0018  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluorotridecanoic Acid   | <0.0017  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |
| Perfluoroundecanoic Acid    | <0.0019  | ug/L  | OS      | 08/20/2020 | 16:26 | EPA 537.1 |     |

This Certificate is Continued On Next Page.

- 1.
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 3.
- 1987 ASTM Annual Standards 4.
- 5.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996



1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094

(205) 699-6647 Telephone (866) 729-7211 Toll Free (205) 699-3882 Fax

Page 2 of 2

Donald Smith Company, Inc. 746 East Main Street Headland, AL 36345-

Attention: Mr. Eli Bundrick

Report Date: 08/21/2020 Receive Date: 08/14/2020 Receive Time: 8:00

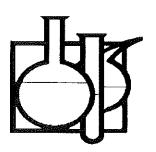
# BLANK PAOE

junda - Stop Miller Approved By:

- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>th</sup> Edition, Updated IV December 1996 1.
- 2.
- 3.
- 4. 1987 ASTM Annual Standards
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 5.
- Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996

Guardian Systems, Inc.

1108 Ashville Koad, P.O. Box 190 Leeds, Alabama 35094 (205) 699-6647 email: gsi@gsilab.com


Chain of Custody Record/ Analysis Report

(205) 699-3882 Fax www.gsilab.com



| ?)<br>?)                    |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    | 1          |
|-----------------------------|---------------------------------------------|----------------------------|-------------------------|----------------|---------------------|-----------------------------------------------------|---------------------|----------------------------------|--------------------|------------|
| Client:                     | Eli Bundrick                                |                            |                         |                |                     | Phone:                                              | ;<br>;;             | 334-693-2969                     |                    |            |
| Company:                    | Donald Smith Company                        |                            |                         |                |                     | Fax:                                                |                     | 334-693-9332                     |                    |            |
| Address:                    | 746 East Main Street                        |                            |                         |                |                     | P.O.#                                               |                     | 220-142                          |                    |            |
|                             | Headland, AL 36345                          |                            |                         |                |                     | Project:                                            | t;                  | Brewton Pearidge Production Well | duction Well       |            |
|                             |                                             |                            | Sample Bottle           | H              | Sample Preservative | reserva                                             | tive                |                                  | Analysis Requested |            |
| Sample ID                   | Sample Description                          | Sample Sample<br>Date Time | Comp.*<br>Grab<br>Glass | HCI<br>Plastic | <sup>\$</sup> ONH   | HO <sup>®</sup> N<br><sup>7</sup> OS <sup>z</sup> H | Cool 4°C<br>** Tedi |                                  |                    |            |
| Well Water                  | Brewton Pearidge Rd                         | 8.13-20 5:03               | ×                       | ×              |                     |                                                     |                     | Radium 226 / 226                 |                    |            |
| Weli Water                  | Brewton Pearidge Rd                         |                            | ×                       | ×              | ×                   |                                                     | -                   | Gross Aloha                      |                    |            |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×                       | ×              | ×                   |                                                     |                     | Gross Beta                       |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |
| Well Water                  | Brewton Pearidge Rd                         | +                          | ×                       | ×              |                     |                                                     | ×                   | PFA's                            |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     | _                   |                                  |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |
|                             |                                             |                            |                         |                | -                   |                                                     |                     |                                  |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |
|                             |                                             | $\sim N$                   |                         |                |                     |                                                     |                     | 1                                |                    |            |
| Sampled by:                 | Dale Brakbridge                             | ( hali the                 | lilloge                 |                | Relingu             | Relinquished by:                                    |                     | Will Robling                     | Date: 2-14-20      | Time: MRVN |
| Received by:                | PRINT                                       | Date: " Slow               | Time:                   |                | Relinquished by:    | lished b                                            |                     |                                  | Date: D            | Time:      |
| Received by:                | A W                                         | Date:                      | Time:                   | v              | Relingu             | ished b                                             |                     |                                  | Date:              | Time.      |
| Received for Laboratory by: | ratory by: NWW VMMM                         | n                          | ₿ate:  V                | , IONN         | al                  | Time                                                | Time: 80(           | 0                                |                    |            |
| Was Shipped Con             | Was Shipped Container intact when received? | Yes ∠                      | No                      | Initials       | e<br>Se<br>Se       | Seals intact? YesW                                  | act?                | Yes NA No                        |                    |            |
| Were all samples I          | Were all samples properly preserved? Yes    | <u> No</u> Initials        | ats                     |                |                     | Sampl                                               | e tem               | ပိ                               |                    |            |
| Comments:                   | Other = See Above for Sample Preservatives, |                            | Field Measurements      | ements         |                     |                                                     |                     |                                  |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |
|                             |                                             |                            |                         |                |                     |                                                     |                     |                                  |                    |            |

Put an "X" in the appropriate column for sample type and sample preservative. Write in analysis requested. \* For composite samples include start and stop date and time in comments section \*\*Write in preservative used in comments



1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094

(205) 699-6647 Telephone **Toll Free** (866) 729-7211 (205) 699-3882 Fax

Page 1 of 12

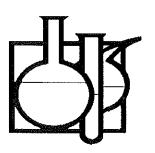
| Donald Smith Company, Inc.  | Report Date: 08/25/2020  |
|-----------------------------|--------------------------|
| 746 East Main Street        | Receive Date: 08/14/2020 |
| Headland, AL 36345-         | Receive Time: 8:00       |
| Attention: Mr. Eli Bundrick |                          |

| Control No : | 2008-00256    | Sample # 001        |
|--------------|---------------|---------------------|
| Sampler :    | DB            | ·                   |
| Sample ID:   | Brewton Peari | dge Production Well |

Sample Date: 08/13/2020 Sample Time: 17:03

### Laboratory Certificate

| PARAMETER                   | RESULTS | UNITS  | ANALYST | DATE       | TIME  | METHOD    | REF   |
|-----------------------------|---------|--------|---------|------------|-------|-----------|-------|
| рН                          | 7.63    | SU     | DB      | 08/13/2020 | 17:03 | 150.1     |       |
| Specific Conductance        | 327.    | umhos  | DB      | 08/13/2020 | 17:03 | SM2510B   |       |
| Alkalinity                  | 145.    | mg/L   | ML      | 08/18/2020 | 11:40 | SM2320B   |       |
| Carbon Dioxide              | 8.8     | mg/L   | ML.     | 08/18/2020 | 14:00 | 4500CO2-D |       |
| Color, APHA                 | <10.    | PCU    | ML      | 08/14/2020 | 8:45  | SM2120B   |       |
| Turbidity, Nephelometric    | 3.47    | NTU    | DB      | 08/13/2020 | 17:03 | 180.1     | (1)   |
| Odor                        | <1.0    | T.O.N. | ML      | 08/14/2020 | 8:50  | SM2150B   | · · / |
| Foaming Agents(Surfactants) | <0.02   | mg/L   | DL      | 08/14/2020 | 16:00 | 425.1     |       |
| Fluoride                    | <0.20   | mg/L   | ML      | 08/14/2020 | 17:07 | 300.0     | (1)   |
| Solids, Total Dissolved     | 218.    | mg/L   | ML      | 08/17/2020 | 14:30 | SM-2540C  | (2)   |
| Nitrogen, Nitrite           | <0.10   | mg/L   | ML      | 08/14/2020 | 17:07 | 300.0     | (1)   |
| Nitrogen, Nitrate           | <0.10   | mg/L   | ML      | 08/14/2020 | 17:07 | 300.0     | (1)   |
| Total Nitrate/Nitrite       | <0.1    | mg/L   | ML      | 08/14/2020 | 17:07 | 300.0     |       |
| Sulfate                     | 8.08    | mg/L   | ML      | 08/14/2020 | 17:07 | 300.0     | (1)   |
| Chloride                    | 2.26    | mg/L   | ML      | 08/13/2020 | 17:07 | 300.0     | (1)   |
| Cyanide, Total              | <0.02   | mg/L   | JH      | 08/20/2020 | 13:53 | 335.4     | (1)   |
| Aluminum                    | 0.057   | mg/L   | DRH     | 08/17/2020 | 10:00 | 200.8     | (-)   |
| Antimony                    | <0.001  | mg/L   | DRH     | 08/17/2020 | 10:00 | 200.8     |       |
| Arsenic                     | <0.001  | mg/L   | DRH     | 08/17/2020 | 10:00 | 200.8     |       |


This Certificate is Continued On Next Page.

#### METHOD REFERENCES

- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 1.
- 2.
- 3.
- 4. 1987 ASTM Annual Standards

5

- 5. Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995
- 6. Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996



1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094

(205) 699-6647 Telephone Toll Free (866) 729-7211 Fax (205) 699-3882

Page 2 of 12

| Donald Smith Company, Inc.  | Report Date: 08/25/2020  |
|-----------------------------|--------------------------|
| 746 East Main Street        | Receive Date: 08/14/2020 |
| Headland, AL 36345-         | Receive Time: 8:00       |
| Attention: Mr. Eli Bundrick |                          |

| Control No : | 2008-00256     | Sample # 001       |
|--------------|----------------|--------------------|
| Sampler :    | DB             |                    |
| Sample ID:   | Brewton Pearic | ge Production Well |

### Sample Date: 08/13/2020 Sample Time: 17:03

### Laboratory Certificate

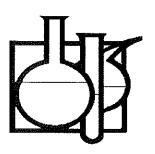
| PARAMETER                 | RESULTS  | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|---------------------------|----------|-------|---------|------------|-------|--------|-----|
| Barium                    | <0.001   | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  |     |
| Beryllium                 | <0.001   | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  |     |
| Cadmium                   | <0.001   | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  |     |
| Calcium                   | 19.4     | mg/L  | DRH     | 08/19/2020 | 13:00 | 200.7  | (1) |
| Chromium                  | <0.001   | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  | . , |
| Copper                    | 0.010    | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  |     |
| Iron                      | 0.09     | mg/L  | DRH     | 08/18/2020 | 12:00 | 200.7  | (1) |
| Lead - mg/L               | <0.001   | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  | ( ) |
| Magnesium                 | 4.90     | mg/L  | DRH     | 08/19/2020 | 13:00 | 200.7  | (1) |
| Manganese                 | <0.02    | mg/L  | DRH     | 08/18/2020 | 12:00 | 200.7  | (1) |
| Nickel                    | 0.002    | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  | . , |
| Selenium                  | <0.001   | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  |     |
| Silver                    | <0.001   | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  |     |
| Sodium                    | 38.      | mg/L  | DRH     | 08/19/2020 | 13:00 | 200.7  | (1) |
| Thallium                  | <0.001   | mg/L  | DRH     | 08/17/2020 | 10:00 | 200.8  | . , |
| Zinc                      | < 0.03   | mg/L  | DRH     | 08/18/2020 | 12:00 | 200.7  | (1) |
| Hardness as CaCO3/L       | 69.      | mg/L  | DRH     | 08/19/2020 | 13:00 | 200.7  | . / |
| Total Organic Carbon      | 0.3      | mg/L  | CFS     | 08/14/2020 | 15:51 | 415.3  |     |
| Langlier Saturation Index | (-0.510) | L.I.  | CFS     | 08/21/2020 | 13:00 | 100E   | (2) |

This Certificate is Continued On Next Page.

#### METHOD REFERENCES

1.

2.


Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 3.

4.

1987 ASTM Annual Standards Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 5.

6. Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995

7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996



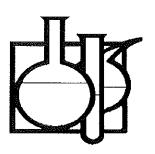
1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone (205) 699-6647 **Toll Free** (866) 729-7211 Fax (205) 699-3882

Page 3 of 12

| Donald Smith Company, Inc.  | Report Date: 08/25/2020  |
|-----------------------------|--------------------------|
| 746 East Main Street        | Receive Date: 08/14/2020 |
| Headland, AL 36345-         | Receive Time: 8:00       |
| Attention: Mr. Eli Bundrick |                          |

Attention: Mr. Ell Bundrick

| Control No : | 2008-00256     | Sample # 001        |
|--------------|----------------|---------------------|
| Sampler :    | DB             |                     |
| Sample ID:   | Brewton Pearie | dge Production Well |


#### Sample Date: 08/13/2020 Sample Time: 17:03

### Laboratory Certificate

| PARAMETER                | RESULTS | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|--------------------------|---------|-------|---------|------------|-------|--------|-----|
| Mercury                  | <0.001  | mg/L  | DRH     | 08/18/2020 | 10:00 | 200.8  |     |
| VOC's, Method 524.2      |         |       | CFS     | 08/17/2020 | 17:02 | 524.2  |     |
| REGULATED COMPOUNDS      |         |       |         |            | 0:00  |        |     |
| Benzene                  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Carbon tetrachloride     | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| o-Dichlorobenzene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| p-Dichlorobenzene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,2-Dichloroethane       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,1-Dichloroethene       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| cis-1,2-Dichloroethene   | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| trans-1,2-Dichloroethene | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Methylene Chloride       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,2-Dichloropropane      | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Ethylbenzene             | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Monochlorobenzene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Styrene                  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Tetrachloroethene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Toluene                  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |

This Certificate is Continued On Next Page.

- 1.
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>th</sup> Edition, Updated IV December 1996 3.
- 4.
- 5.
- 1987 ASTM Annual Standards Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996

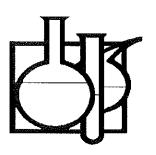


1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone (205) 699-6647 **Toll Free** (866) 729-7211 Fax (205) 699-3882

Page 4 of 12

| Donald Smith Company, Inc.<br>746 East Main Street<br>Headland, AL 36345- | Report Date: 08/25/2020<br>Receive Date: 08/14/2020<br>Receive Time: 8:00 |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Attention: Mr. Eli Bundrick                                               |                                                                           |
|                                                                           | Sample Date: 08/13/2020                                                   |

| Control No : | 2008-00256     | Sample # 001        |
|--------------|----------------|---------------------|
| Sampler :    | DB             |                     |
| Sample ID:   | Brewton Pearie | dge Production Well |


Sample Date: 08/13/2020 Sample Time: 17:03

### Laboratory Certificate

| PARAMETER               | RESULTS | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|-------------------------|---------|-------|---------|------------|-------|--------|-----|
| 1,2,4-Trichlorobenzene  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,1,1-Trichloroethane   | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,1,2-Trichloroethane   | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| TCE(Trichloroethene)    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Vinyl chloride          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Xylene (total)          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| UNREGULATED COMPOUNDS   |         |       |         |            | 0:00  |        | • • |
| Chloroform              | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Bromodichloromethane    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Dibromochloromethane    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Bromoform               | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Bromochloromethane      | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Bromomethane            | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| m-Dichlorobenzene       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Dichlorodifluoromethane | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Trichlorofluoromethane  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Dibromomethane          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,1-Dichloropropene     | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Isopropylbenzene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |

This Certificate is Continued On Next Page.

- 1.
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>th</sup> Edition, Updated IV December 1996 3.
- 4. 1987 ASTM Annual Standards
- 5.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996

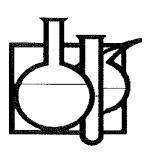


1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone (205) 699-6647 Toll Free (866) 729-7211 (205) 699-3882 Fax

Page 5 of 12

| Donald Smith Company, Inc.<br>746 East Main Street<br>Headland, AL 36345- | Report Date: 08/25/2020<br>Receive Date: 08/14/2020<br>Receive Time: 8:00 |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Attention: Mr. Eli Bundrick                                               |                                                                           |
| Control No. 2008-00256 Sample # 001                                       | Sample Date: 08/13/2020                                                   |

| Control No : | 2008-00256     | Sample # 001        |
|--------------|----------------|---------------------|
| Sampler :    | DB             |                     |
| Sample ID:   | Brewton Pearic | Ige Production Well |


# Sample Time: 17:03

### Laboratory Certificate

| PARAMETER                 | RESULTS | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|---------------------------|---------|-------|---------|------------|-------|--------|-----|
| n-Butylbenzene            | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,1-Dichloroethane        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| tert-Butylbenzene         | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| p-Isopropyltoluene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| cis-1,3-Dichloropropene   | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| trans-1,3-Dichloropropene | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,1,2,2-Tetrachloroethane | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,2,3-Trichloropropane    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,1,1,2-Tetrachloroethane | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Chloroethane              | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Chloromethane             | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 2,2-Dichloropropane       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| o-Chlorotoluene           | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| p-Chlorotoluene           | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Bromobenzene              | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,3-Dichloropropane       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| sec-Butylbenzene          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,2,4-Trimethylbenzene    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| n-Propylbenzene           | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |

This Certificate is Continued On Next Page.

- 1.
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>th</sup> Edition, Updated IV December 1996 3.
- 4. 1987 ASTM Annual Standards
- 5.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996



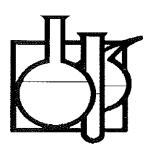
1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094

(205) 699-6647 Telephone Toll Free (866) 729-7211 (205) 699-3882 Fax

Page 6 of 12

| Donald Smith Company, Inc.<br>746 East Main Street<br>Headland, AL 36345- | Report Date: 08/25/2020<br>Receive Date: 08/14/2020<br>Receive Time: 8:00 |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Attention: Mr. Eli Bundrick                                               |                                                                           |
| Control No · 2008-00256 Sample # 001                                      | Sample Date: 08/13/2020                                                   |

Control No : 2008-00256 Sample # 001 Sampler : DB **Brewton Pearidge Production Well** Sample ID:


Sample Time: 17:03

### Laboratory Certificate

| PARAMETER               | RESULTS  | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|-------------------------|----------|-------|---------|------------|-------|--------|-----|
| Naphthalene             | <0.0005  | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Hexachlorobutadiene     | <0.0005  | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,3,5-Trimethylbenzene  | <0.0005  | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| 1,2,3-Trichlorobenzene  | <0.0005  | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| Methyl tert-Butyl Ether | <0.0005  | mg/L  | CFS     | 08/17/2020 | 17:02 | 524.2  | (5) |
| DBCP                    | <0.00002 | mg/L  | CAC     | 08/21/2020 | 10:46 | 504.1  | . , |
| EDB(Ethylene Dibromide) | <0.00001 | mg/L  | CAC     | 08/21/2020 | 10:46 | 504.1  |     |
| REGULATED COMPOUNDS     |          |       |         |            | 0:00  |        |     |
| Glyphosate              | <0.006   | mg/L  | DL      | 08/23/2020 | 21:47 | 547    | (5) |
| Chlordane               | <0.0002  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| Endrin                  | <0.00001 | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| Heptachlor              | <0.00004 | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| Heptachlor Epoxide      | <0.00002 | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| Lindane                 | <0.00002 | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| Methoxychlor            | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| PCB, 1016               | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| PCB, 1221               | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| PCB, 1232               | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| PCB, 1242               | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |

This Certificate is Continued On Next Page.

- 1.
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 3.
- 1987 ASTM Annual Standards 4.
- 5.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996

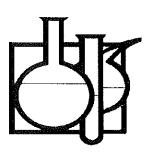


1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone (205) 699-6647 Toll Free (866) 729-7211 (205) 699-3882 Fax

Page 7 of 12

| Donald Smith Company, Inc.  | Report Date: 08/25/2020  |
|-----------------------------|--------------------------|
| 746 East Main Street        | Receive Date: 08/14/2020 |
| Headland, AL 36345-         | Receive Time: 8:00       |
| Attention: Mr. Eli Bundrick |                          |

| Control No : | 2008-00256     | Sample # 001        |
|--------------|----------------|---------------------|
| Sampler :    | DB             |                     |
| Sample ID:   | Brewton Pearie | dge Production Well |


#### Sample Date: 08/13/2020 Sample Time: 17:03

### Laboratory Certificate

| PARAMETER                 | RESULTS  | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|---------------------------|----------|-------|---------|------------|-------|--------|-----|
| PCB, 1248                 | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| PCB, 1254                 | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| PCB, 1260                 | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| Toxaphene                 | <0.001   | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| Aldrin                    | <0.001   | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| Dieldrin                  | <0.0001  | mg/L  | JH      | 08/19/2020 | 15:25 | 508    | (5) |
| 2,4-D                     | <0.0001  | mg/L  | JH      | 08/20/2020 | 11:08 | 515.4  | (5) |
| Pentachlorophenol         | <0.00004 | mg/L  | JH      | 08/20/2020 | 11:08 | 515.4  | (5) |
| 2,4,5-TP (Silvex)         | <0.0002  | mg/L  | JH      | 08/20/2020 | 11:08 | 515.4  | (5) |
| Dalapon                   | <0.001   | mg/L  | JH      | 08/20/2020 | 11:08 | 515.4  | (5) |
| Dinoseb                   | <0.0002  | mg/L  | JH      | 08/20/2020 | 11:08 | 515.4  | (5) |
| Picloram                  | <0.0001  | mg/L  | JH      | 08/20/2020 | 11:08 | 515.4  | (5) |
| Dicamba                   | <0.0002  | mg/L  | JH      | 08/20/2020 | 11:08 | 515.4  | (5) |
| Alachlor                  | <0.0002  | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (1) |
| Atrazine                  | <0.0001  | mg/L  | ٦H      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Benzo(a)pyrene            | <0.00002 | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Di(2-ethylhexyl)adipate   | <0.0006  | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Di(2-ethylhexyl)phthalate | <0.0012  | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Hexachlorobenzene         | <0.0001  | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |

This Certificate is Continued On Next Page.

- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 1.
- 2.
- 3.
- 1987 ASTM Annual Standards 4.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 5.
- Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996



Sample ID:

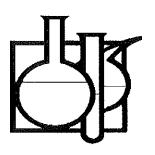
# **GUARDIAN SYSTEMS, INC.**

1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094

**Brewton Pearidge Production Well** 

Telephone (205) 699-6647 **Toll Free** (866) 729-7211 Fax (205) 699-3882

Page 8 of 12


| Donald Smith Company, Inc.          | Report Date: 08/25/2020  |
|-------------------------------------|--------------------------|
| 746 East Main Street                | Receive Date: 08/14/2020 |
| Headland, AL 36345-                 | Receive Time: 8:00       |
| Attention: Mr. Eli Bundrick         |                          |
| Control No: 2008-00256 Sample # 001 | Sample Date: 08/13/2020  |
| Sampler:  DB                        | Sample Time: 17:03       |

## Laboratory Certificate

| PARAMETER                 | RESULTS  | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|---------------------------|----------|-------|---------|------------|-------|--------|-----|
| Hexachlorocyclopentadiene | <0.0001  | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Simazine                  | <0.00007 | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Butachlor                 | <0.001   | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Metolachlor               | <0.001   | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Metribuzin                | <0.001   | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Propachlor                | <0.001   | mg/L  | JH      | 08/20/2020 | 13:22 | 525.2  | (5) |
| Aldicarb                  | <0.0005  | mg/L  | DL      | 08/18/2020 | 8:19  | 531.2  | (5) |
| Aldicarb Sulfone          | <0.0008  | mg/L  | DL      | 08/18/2020 | 8:19  | 531.2  | (5) |
| Aldicarb Sulfoxide        | <0.0005  | mg/L  | DL      | 08/18/2020 | 8:19  | 531.2  | (5) |
| Carbofuran                | <0.0009  | mg/L  | DL      | 08/18/2020 | 8:19  | 531.2  | (5) |
| Oxamyl                    | <0.002   | mg/L  | DL      | 08/18/2020 | 8:19  | 531.2  | (5) |
| UNREGULATED COMPOUNDS     |          |       |         |            | 0:00  |        |     |
| Carbaryl                  | <0.002   | mg/L  | DL      | 08/18/2020 | 8:19  | 531.2  | (5) |
| 3-Hydroxycarbofuran       | <0.002   | mg/L  | DL      | 08/18/2020 | 8:19  | 531.2  | (5) |
| Methomyl                  | <0.0005  | mg/L  | DL.     | 08/18/2020 | 8:19  | 531.2  | (5) |
| Endothall (mg/L)          | <0.009   | mg/L  | JH      | 08/15/2020 | 1:26  | 548.1  | (5) |
| Diquat                    | <0.0004  | mg/L  | DL      | 08/25/2020 | 12:46 | 549.2  | (5) |

This Certificate is Continued On Next Page.

- 1.
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 3.
- 4. 1987 ASTM Annual Standards
- 5.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4<sup>th</sup> Edition, May 1996



1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone (205) 699-6647 Toll Free (866) 729-7211 Fax (205) 699-3882

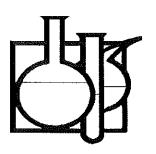
Page 9 of 12

Donald Smith Company, Inc. 746 East Main Street Headland, AL 36345-

Attention: Mr. Eli Bundrick

Report Date: 08/25/2020 Receive Date: 08/14/2020 Receive Time: 8:00

Control No : 2008 00256 Sample # 002 Sampler : DB Sample ID: Trip Blank


### Sample Date: 08/13/2020 Sample Time: 17:03

### Laboratory Certificate

| PARAMETER                | RESULTS | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|--------------------------|---------|-------|---------|------------|-------|--------|-----|
| VOC's, Method 524.2      |         |       | CFS     | 08/17/2020 | 17:42 | 524.2  |     |
| REGULATED COMPOUNDS      |         |       |         |            | 0:00  |        |     |
| Benzene                  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Carbon tetrachloride     | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| o-Dichlorobenzene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| p-Dichlorobenzene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,2-Dichloroethane       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,1-Dichloroethene       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| cis-1,2-Dichloroethene   | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| trans-1,2-Dichloroethene | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Methylene Chloride       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,2-Dichloropropane      | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Ethylbenzene             | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Monochlorobenzene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Styrene                  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Tetrachloroethene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |

This Certificate is Continued On Next Page.

- 1.
- 2
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 3.
- 1987 ASTM Annual Standards 4.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 5.
- Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996



1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone (205) 699-6647 Toll Free (866) 729-7211 Fax (205) 699-3882

Page 10 of 12

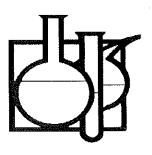
Report Date: 08/25/2020 Receive Date: 08/14/2020 Receive Time: 8:00

Donald Smith Company, Inc. 746 East Main Street Headland, AL 36345-

Attention: Mr. Eli Bundrick

| Control No : | 2008-00256 | Sample # | 00 |
|--------------|------------|----------|----|
| Sampler :    | DB         |          |    |
| Sample ID:   | Trip Blank |          |    |

### 02


### Sample Date: 08/13/2020 Sample Time: 17:03

### Laboratory Certificate

| PARAMETER               | RESULTS | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|-------------------------|---------|-------|---------|------------|-------|--------|-----|
| Toluene                 | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,2,4-Trichlorobenzene  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,1,1-Trichloroethane   | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,1,2-Trichloroethane   | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| TCE(Trichloroethene)    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Vinyl chloride          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Xylene (total)          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| UNREGULATED COMPOUNDS   |         |       |         |            | 0:00  |        |     |
| Chloroform              | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Bromodichloromethane    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Dibromochloromethane    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Bromoform               | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Bromochloromethane      | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Bromomethane            | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| m-Dichlorobenzene       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Dichlorodifluoromethane | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Trichlorofluoromethane  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Dibromomethane          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,1-Dichloropropene     | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |

This Certificate is Continued On Next Page.

- 1
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>th</sup> Edition, Updated IV December 1996 3.
- 4. 1987 ASTM Annual Standards
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 5.
- Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996

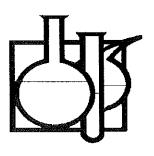


1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone (205) 699-6647 **Toll Free** (866) 729-7211 (205) 699-3882 Fax

Page 11 of 12

| Donald Smith Company, Inc.<br>746 East Main Street<br>Headland, AL 36345- | Report Date: 08/25/2020<br>Receive Date: 08/14/2020<br>Receive Time: 8:00 |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Attention: Mr. Eli Bundrick                                               |                                                                           |
| Control No : 2008 00256 Sample # 002                                      | Sample Date: 08/13/2020                                                   |

Sample Time: 17:03


| Control No : | 2008-00256 | Sample # 002 |
|--------------|------------|--------------|
| Sampler :    | DB         |              |
| Sample ID:   | Trip Blank |              |

### Laboratory Certificate

| PARAMETER                 | RESULTS | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|---------------------------|---------|-------|---------|------------|-------|--------|-----|
| Isopropylbenzene          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| n-Butylbenzene            | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,1-Dichloroethane        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| tert-Butylbenzene         | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| p-Isopropyltoluene        | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| cis-1,3-Dichloropropene   | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| trans-1,3-Dichloropropene | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,1,2,2-Tetrachloroethane | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,2,3-Trichloropropane    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,1,1,2-Tetrachloroethane | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Chloroethane              | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Chloromethane             | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 2,2-Dichloropropane       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| o-Chlorotoluene           | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| p-Chlorotoluene           | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Bromobenzene              | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,3-Dichloropropane       | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| sec-Butylbenzene          | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,2,4-Trimethylbenzene    | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |

This Certificate is Continued On Next Page.

- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 1.
- 2.
- 3.
- 1987 ASTM Annual Standards 4.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 5.
- Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4<sup>th</sup> Edition, May 1996



1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094 Telephone **Toll Free** Fax

(205) 699-6647 (866) 729-7211 (205) 699-3882

Page 12 of 12

| Donald Smith Company, Inc.<br>746 East Main Street<br>Headland, AL 36345- | Report Date: 08/25/2020<br>Receive Date: 08/14/2020<br>Receive Time: 8:00 |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Attention: Mr. Eli Bundrick                                               |                                                                           |
|                                                                           | Sample Date: 08/13/2020                                                   |

Sample # 002 Control No : 2008-00256 Sampler : DB Sample ID: Trip Blank

ample Date: 08/13/2020 Sample Time: 17:03

### Laboratory Certificate

| PARAMETER               | RESULTS | UNITS | ANALYST | DATE       | TIME  | METHOD | REF |
|-------------------------|---------|-------|---------|------------|-------|--------|-----|
| n-Propylbenzene         | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Naphthalene             | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Hexachlorobutadiene     | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,3,5-Trimethylbenzene  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| 1,2,3-Trichlorobenzene  | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |
| Methyl tert-Butyl Ether | <0.0005 | mg/L  | CFS     | 08/17/2020 | 17:42 | 524.2  | (5) |

Approved By:

- 1.
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>rd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 З.
- 1987 ASTM Annual Standards 4.
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 5.
- Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4th Edition, May 1996

1108 Ashville Road, P.O. Box 190 Leeds, Alabama 35094 (205) 699-6647 Guardian Systems, Inc.

and

Chain of Custody Record/ Analysis Report

(205) 699-3882 Fax

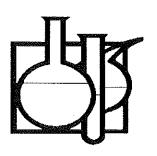


| email: gsi@gsilab.com       | ib.com                                      | www.gsilab.com             |                |          |                         |                                 |                    | 1                                |                   |                                           |                        | J                                                                   | 1               |             |
|-----------------------------|---------------------------------------------|----------------------------|----------------|----------|-------------------------|---------------------------------|--------------------|----------------------------------|-------------------|-------------------------------------------|------------------------|---------------------------------------------------------------------|-----------------|-------------|
| Client:                     | Eli Bundrick                                |                            |                |          |                         |                                 | Phone:             |                                  | 334-693-2969      | 3-2969                                    |                        |                                                                     |                 |             |
| Company:                    | Donald Smith Company                        |                            |                |          |                         |                                 | Fax:               |                                  | 334-693-9332      | 3-9332                                    |                        |                                                                     |                 |             |
| Address:                    | 746 East Main Street                        |                            |                |          |                         |                                 | P.O.#:             |                                  | 220-142           |                                           |                        |                                                                     |                 |             |
|                             | Headland, AL 36345                          |                            |                |          |                         |                                 | Project:           | i:                               | Brewto            | Brewton Pearidge Production               | roductio               | n 1                                                                 |                 |             |
|                             |                                             |                            | Sample Bottle  | tte      | Samp                    | Sample Preservative             | servat             | ive                              |                   |                                           | Analy                  | Analysis Requested                                                  |                 |             |
| Sample ID                   | Sample Description                          | Sample Sample<br>Date Time | *.qmo⊃         |          | HNO <sup>3</sup><br>HCI | <sup>\$</sup> OS <sup>z</sup> H | HORN               | O <sup>ther **</sup><br>Other ** |                   |                                           |                        |                                                                     |                 |             |
| Well Water                  | Brewton Pearidge Rd                         | 8-13-20 5:03               |                | 1000     |                         |                                 | Contraction of the | ×                                | Field pH:         | H: 15                                     | in Contraction         |                                                                     | 7.63            |             |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×              |          |                         |                                 |                    | ×                                | the second second | Field Conductivity:                       | in the dama            |                                                                     | 327             | Sec. all    |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×              |          |                         |                                 |                    | ×                                | -                 | Field Turbidity:                          |                        |                                                                     | 3.47            |             |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×              | ×        | ×                       |                                 | ×                  |                                  | Total S           | Total Sb, As, Ba, Be, Cd, Cr, Pb, Ni, Se, | , Cd, Cr,              |                                                                     | TI, AI, Ca, Cu, |             |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×              | ×        | ×                       |                                 | ×                  |                                  | Hardne            | Hardness, Fe, Mg, Mn, Ag, Na, Zn          | An, Ag, N              | a, Zn                                                               |                 |             |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×              | ×        |                         |                                 | XX                 |                                  | Total Cyanide     | yanide                                    |                        |                                                                     |                 |             |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×              | ×        |                         |                                 | ×                  |                                  | Fluorid           | e, Nitrate, Ni                            | trite, Nitr            | Fluoride, Nitrate, Nitrite, Nitrate + Nitrite, Sulfate, Alkalinity, | ulfate, Alkali  | lity,       |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×              | ×        |                         |                                 | ×                  |                                  | Carbon            | Dioxide, Ch                               | loride, C              | Carbon Dioxide, Chloride, Color, Foaming Agents (MBAS)              | Agents (MB/     | S),         |
| Well Water                  | Brewton Pearidge Rd                         |                            | ×              | ×        |                         |                                 | ×                  |                                  | Odor, TDS         | SD                                        |                        |                                                                     |                 |             |
| Well Water                  | Brewton Pearidge Rd                         |                            | XX             |          | ×                       |                                 | ×                  | ~                                | Total Hg          | D                                         |                        |                                                                     |                 |             |
| Well Water                  | Brewton Pearidge Rd                         |                            | XX             |          |                         |                                 | ×                  | _                                | TOC               |                                           |                        |                                                                     |                 |             |
|                             | Brewton Pearidge Rd                         |                            | xx             |          |                         |                                 | ×                  |                                  | EPA 52            | EPA 524 VOC (1:1 HCL,                     |                        | Ascorbic Acid)                                                      |                 |             |
| Trip Blank                  | Trip Blank                                  | T                          | 1 × ×          |          | ×                       |                                 | ×                  | ×                                |                   | EPA 524 YOC (1:1 HCL.                     |                        | Ascorbic Acid)                                                      |                 |             |
| Sampled by:                 | Dale Brekhage                               | (helts                     | sullinger      |          | Re                      | Relinquished by:                | hed b              | y:                               | (halett.          | chlund                                    | Date:                  | e: 6-14.2                                                           | O Time: ¿       | 0800        |
| Received by:                |                                             | Date:                      | Time:          |          | Re                      | Relinquished by:                | hed b              | y:                               | 1                 | -                                         | Date:                  | :e                                                                  | Time:           |             |
| Received by:                | J P                                         | Date:                      | Time: 🦯        | P        | Re                      | Relinquished by:                | hed b              | y:                               |                   |                                           | Date:                  | :e:                                                                 | Time:           |             |
| Received for Laboratory by: | poratory by:                                | mer                        | Date: 14       | JAK      | rel                     |                                 | Time:              | 8                                | 0                 |                                           | depart la              | 166 172192                                                          |                 | Vou         |
| Was Shipped Co              | Was Shipped Container intact when received? | V Yes                      |                | Initials | 5                       | Se                              | Seals intact?      | act?                             | Yes U             | No                                        | ousite                 |                                                                     | 14 2            | the red dis |
| Were all sample             | Were all samples properly preserved? Yes    | No Initials                | als U          | N        |                         |                                 | Sample temp.       | le tel                           | mp. (             | ပ္စ                                       | depart site            | Fsite Bigz4                                                         |                 | Can         |
| Comments:                   |                                             |                            |                |          |                         |                                 |                    |                                  | •                 |                                           | backat                 | at lab                                                              | 00:0            |             |
|                             | PH Meter Calibration Info                   | Buffer Traceability #      | # Exp. Date    | ate      |                         | a                               | QC Sample          | 0                                |                   | Tecl                                      | Technician/Information | ormation                                                            |                 | A           |
|                             | Buffer #: +, 00                             | INRE 20030203              | 1-21.22        |          | raceab                  | Traceability # INOC 2005 (10)   | NOC                | 2001                             | scier             | Calibrated by:                            | 0                      | ult helber                                                          |                 |             |
|                             | Buffer #: 7.00                              | INRE 19101602              | 30 240 21      |          | :Hq                     | カカ・つ                            | 4                  | 6,40                             |                   | Calibration Time:                         |                        | 8:03                                                                | 1               |             |
|                             | Buffer #: 10.00                             | INRE (9 to 1603            | 10-20          | 1        | Turb:                   |                                 |                    | 1                                |                   | Calibration Date:                         |                        | 5-13-20                                                             | -               |             |
|                             | -er                                         | Standard Traceability #    | ty # Exp. Date | ate      |                         |                                 |                    |                                  |                   | Calibration Temp:                         | lemp:                  | 79°F                                                                | -               |             |
|                             | Standard # \$00 NTU                         |                            | 2/21           |          |                         |                                 |                    |                                  |                   |                                           |                        |                                                                     | l,              |             |
|                             | Standard # / 0 0 NTU                        |                            | ale            | Τ        |                         |                                 |                    |                                  |                   | Notes:                                    |                        | pulled                                                              | 1.              |             |
|                             | Standard # 20 NTU                           |                            | 3/21           |          |                         |                                 |                    |                                  |                   |                                           |                        | Tirally (                                                           | 1 10            | 1 10        |
|                             | 0.02NTU                                     |                            |                |          |                         |                                 |                    |                                  |                   |                                           |                        |                                                                     | Servictua.      | )           |
|                             |                                             |                            |                |          | 0                       |                                 |                    |                                  |                   |                                           |                        | •                                                                   | 2               |             |

31. 'Sg

Guardian Systems, Inc.

1108 Ashville Road, P.O. Box 190 Leeds, Alabama 35094 (205) 699-6647 email: gsi@gsilab.com


Chain of Custody Record/ Analysis Report

(205) 699-3882 Fax www.gsilab.com



| Client:                              | Eli Bundrick                                                   |                |                |        |          |                  |      |                     |                                | Phone:           |           | 334-6                 | 334-693-2969                           |          |           |                    |             |
|--------------------------------------|----------------------------------------------------------------|----------------|----------------|--------|----------|------------------|------|---------------------|--------------------------------|------------------|-----------|-----------------------|----------------------------------------|----------|-----------|--------------------|-------------|
| Company:                             | Donald Smith Company                                           |                |                |        |          |                  |      |                     |                                | Fax:             |           | 334-6                 | 334-693-9332                           |          |           |                    |             |
| Address:                             | 746 East Main Street                                           |                |                |        |          |                  |      |                     | <u>Ida</u>                     | P.O.#:           |           | 220-142               | 42                                     |          |           |                    |             |
|                                      | Headland, AL 36345                                             |                |                |        |          |                  |      |                     | <u> </u>                       | Project:         | ÷         | Brew                  | Brewton Pearidge Production Well       | Produc   | tion We   | =                  |             |
|                                      |                                                                |                |                | Sample | ole B    | Bottle           |      | Sample Preservative | Pres                           | ervat            | ive       |                       |                                        | An       | alysis R  | Analysis Requested |             |
| Sample ID                            | Sample Description                                             | Sample<br>Date | Sample<br>Time | *.qmoJ | Grab     | Class<br>Plastic | HCI  | <sup>£</sup> ONH    | <sup>t</sup> OS <sup>t</sup> H | NaOH<br>Cool 4ºC | Other **  |                       |                                        |          |           |                    |             |
|                                      | Brewton Pearidge Rd                                            | 8-13-20        |                |        | -        | ×                | ×    |                     |                                | $\hat{}$         | ×<br>×    |                       | EPA 504 (1:1 HCL, Sodium Thiosulfate)  | Sodiun   | 1 Thios   | ulfate)            |             |
|                                      | Brewton Pearidge Rd                                            | (              | 1              |        | ×        | ×                | cuan |                     |                                | _                | XX        |                       | EPA 515 (Sodium Sulfite)               | Sulfite) |           |                    |             |
|                                      | Brewton Pearidge Rd                                            |                |                |        | ×        | ×                |      |                     |                                | $\hat{}$         | ××        |                       | EPA 508 (Sodium Thiosulfate)           | Thiosulf | fate)     |                    |             |
|                                      | Brewton Pearidge Rd                                            | _              |                |        | ×        | ×                | ×    |                     |                                | _                | XX        | and the second second | EPA 525 (1:1 HCL, Sodium Sulfite)      | Sodiun   | n Sulfite | (8                 |             |
|                                      | Brewton Pearidge Rd                                            |                |                |        | ×        | ×                | _    |                     |                                | $\hat{-}$        | ××        | Contraction of the    | EPA 531 (Potassium Dihydrogen Citrate) | m Dihye  | drogen    | Citrate)           |             |
|                                      | Brewton Pearidge Rd                                            |                |                |        | ×        | ×                |      |                     |                                | _                | X X       | and the second second | EPA 547 (Sodium Thiosulfate)           | Thiosulf | fate)     |                    |             |
|                                      | Brewton Pearidge Rd                                            |                |                |        | ×        | ×                |      |                     | -                              | $\hat{}$         | ××        | and the second second | EPA 548 (Sodium Thiosulfate)           | Thiosult | fate)     |                    |             |
|                                      | Brewton Pearidge Rd                                            | _/             | 1              |        | ×        | ×                |      |                     |                                | $\hat{}$         | X<br>X    | /st                   | EPA 549 (Sodium Thiosulfate)           | Thiosulf | fate)     |                    |             |
|                                      |                                                                |                |                |        | $\vdash$ | ┝                |      |                     |                                |                  | -         |                       |                                        |          | _         |                    |             |
|                                      |                                                                |                |                |        |          |                  | _    |                     | -                              | -                | _         |                       |                                        | _        |           |                    |             |
|                                      |                                                                |                |                |        |          |                  |      |                     |                                |                  |           |                       |                                        |          | _         |                    |             |
|                                      |                                                                |                |                |        |          |                  |      |                     |                                |                  |           |                       |                                        |          |           |                    |             |
|                                      |                                                                |                | $\mathcal{C}$  | 1      |          |                  |      |                     | _                              |                  | _         | 0                     | Ç                                      |          | _         |                    |             |
| Sampled by:                          | Dale Buakhage                                                  | 6              | ( dalit.       | ielle. | Xe       |                  |      | Relin               | Relinquished by:               | ned t            | y:        | 1 Jalli               | maller                                 |          | Date: §   | 8-14-20            | Time: 08:00 |
| Received by:                         | Z/                                                             | Date:          | SIGN /         | Time:  |          |                  |      | Relin               | Relinquished by:               | hed t            | :Y        |                       |                                        |          | Date:     |                    | Time:       |
| Received by:                         | K) K                                                           | Date:          |                | Time:  |          | d                |      | Relin               | Relinquished by:               | hed t            | :Y        |                       |                                        | _        | Date:     |                    | Time:       |
| Received for Laboratory by           | atory by Chui, I MA                                            | mer            |                | Date:  | R        | 为                | 2    | 2                   |                                | щ                | Time: 900 | 8                     | 10                                     |          |           |                    |             |
| Was Shipped Conta                    | Was Shipped Container intact when received?                    |                | Yes 🖌          | No     |          | Initials         | als  | 2                   | Sea                            | ls int           | act?      | Seals intact? Yes     | No<br>No                               | 1        |           |                    |             |
| Were all samples properly preserved? | roperly preserved? Yes 🖌                                       | No             | Initials       |        | 5        |                  | 1    |                     | 0)                             | Sample temp.     | le te     | mp. 4.                | ç                                      |          |           |                    |             |
| Comments:                            | Other = See Above for Sample Preservatives, Field Measurements | ple Presen     | ratives, Fie   | Id Me  | asur     | eme              | nts  |                     |                                |                  |           |                       |                                        |          |           |                    |             |
|                                      |                                                                |                |                |        |          |                  |      |                     |                                |                  |           |                       |                                        |          |           |                    |             |
|                                      |                                                                |                |                |        |          |                  |      |                     |                                |                  |           |                       |                                        |          |           |                    |             |

Put an "X" in the appropriate column for sample type and sample preservative. Write in analysis requested. \* For composite samples include start and stop date and time in comments section \*\*Write in preservative used in comments



Sample ID:

# **GUARDIAN SYSTEMS, INC.**

1108 Ashville Road P.O. Box 190 Leeds, Alabama 35094

Brewton Pearidge Production Well- Rads

Telephone (205) 699-6647 Toll Free (866) 729-7211 (205) 699-3882 Fax

Page 1 of 1

| Donald Smith<br>746 East Mai<br>Headland, Al |                  |              | Report Date:<br>Receive Date:<br>Receive Time: | 08/14/2020 |
|----------------------------------------------|------------------|--------------|------------------------------------------------|------------|
| Attention: M                                 | r. Eli Bundrick  |              |                                                |            |
| Control No :<br>Sampler :                    | 2008-00275<br>DB | Sample # 001 | Sample Date:<br>Sample Time:                   |            |

Laboratory Certificate

| PARAMETER   | RESULTS | UNITS | ANALYST | DATE       | TIME  | METHOD    | REF |
|-------------|---------|-------|---------|------------|-------|-----------|-----|
| Gross Alpha | <1.4    | pCi/L | OS      | 08/21/2020 | 6:26  | 900.0     | (6) |
| Gross Beta  | 6.4     | pCi/L | OS      | 08/21/2020 | 6:26  | 900.0     | (6) |
| Radium 226  | <0.2    | pCi/L | OS      | 08/25/2020 | 11:45 | EPA 903.1 | ( ) |
| Radium 228  | <0.8    | pCi/L | OS      | 08/24/2020 | 13:46 | EPA RA-05 |     |

Approved By:

- 1.
- 2.
- Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-20, revised March 1983, August 1993 May 1994 Standard Methods for the Examination of Water and Waste Water, 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, and 22<sup>nd</sup> Edition, 2012 Test Methods for Evaluating Solid Wastes Physical Chemical Method SW-846, 3<sup>rd</sup> Edition, Updated IV December 1996 3.
- 4. 1987 ASTM Annual Standards
- Code of Federal Regulations, Title 40, Part 136, Appendix A, Revised July 1995 5.
- Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039, Revised July 1991, August 1995 6.
- 7. NIOSH Manual of Anaytical Methods, 4<sup>th</sup> Edition, May 1996

Guardian Systems, Inc.

1108 Ashville Road, P.O. Box 190 Leeds, Alabama 35094 (205) 699-6647

Chain of Custody Record/ Analysis Report

(205) 699-3882 Fax



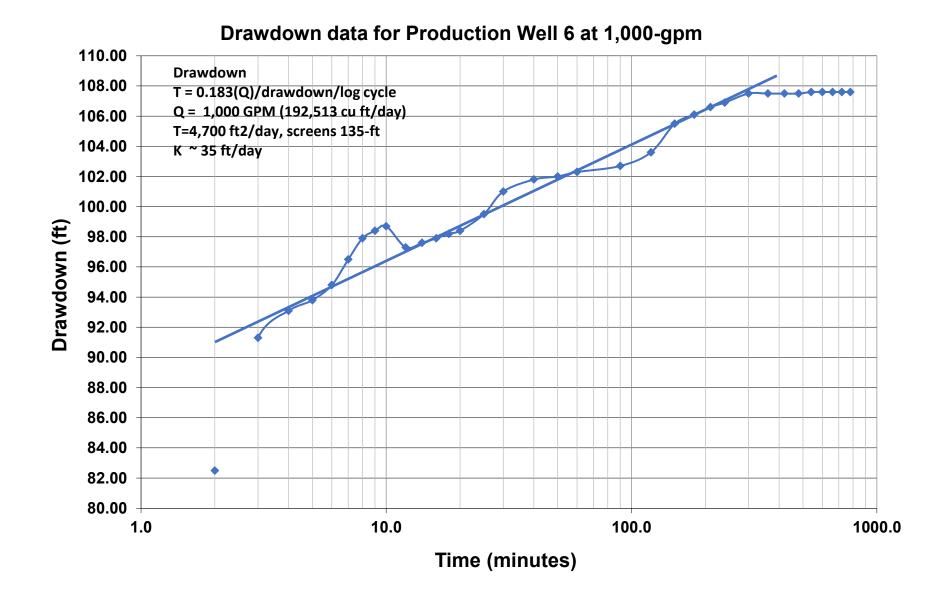
•

| email: gsi@gsilab.com       | com                                                            | www.gsilab.com  | o.com          |               |       |                  |          |                     |                                 |      |                  |          |                                  |        | 4                  |     |             |
|-----------------------------|----------------------------------------------------------------|-----------------|----------------|---------------|-------|------------------|----------|---------------------|---------------------------------|------|------------------|----------|----------------------------------|--------|--------------------|-----|-------------|
| Client:                     | Eli Bundrick                                                   |                 |                |               |       |                  |          |                     |                                 | 4    | Phone:           |          | 334-693-2969                     |        |                    |     |             |
| Company:                    | Donald Smith Company                                           |                 |                |               |       |                  |          |                     |                                 | Fax: | ÷                |          | 334-693-9332                     |        |                    |     |             |
| Address:                    | 746 East Main Street                                           |                 |                |               |       |                  |          |                     |                                 | a.   | P.O.#:           |          | 220-142                          |        |                    |     |             |
|                             | Headland, AL 36345                                             |                 |                |               |       |                  |          |                     |                                 | P    | Project:         |          | Brewton Pearidge Production Well | Produc | tion Well          |     |             |
|                             |                                                                |                 |                | Sample Bottle | ole E | sottle           |          | Sample Preservative | e Pr                            | eser | vativ            | e        |                                  | Ans    | Analysis Requested | ted |             |
| Sample ID                   | Sample Description                                             | Sample<br>Date  | Sample<br>Time | *.qmo⊃        | Grab  | Glass<br>Plastic | HCI      | <sup>€</sup> ONH    | <sup>\$</sup> OS <sup>z</sup> H | HOBN | Cool 4°C         | Ofher ** |                                  |        |                    |     |             |
| Well Water                  | Brewton Pearidge Rd                                            | 8:13-20         | 5:03           |               | ×     | ×                |          | ×                   |                                 |      |                  |          | Radium 226 / 226                 |        |                    |     |             |
| Vell Water                  | Brewton Pearidge Rd                                            |                 | !              |               | ×     | ×                |          | ×                   |                                 |      |                  |          | Gross Alpha                      |        |                    |     |             |
| Nell Water                  | Brewton Pearidge Rd                                            |                 |                |               | ×     | ×                |          | ×                   |                                 |      |                  |          | Gross Beta                       |        |                    |     |             |
|                             |                                                                |                 |                |               |       | -                |          |                     |                                 |      |                  |          |                                  |        |                    |     |             |
| Vell Water                  | Brewton Pearidge Rd                                            |                 | t              |               | ×     | ×                | +        |                     |                                 |      | ×                |          | PFA's                            |        |                    | _   |             |
|                             |                                                                |                 |                |               | -     | _                | _        |                     |                                 | _    |                  |          |                                  |        |                    | -   |             |
|                             |                                                                |                 |                |               | +     | +                | ┝        |                     |                                 |      |                  |          |                                  |        |                    |     |             |
|                             |                                                                |                 |                |               |       | -                | -        |                     |                                 |      |                  |          |                                  | _      |                    |     |             |
|                             |                                                                |                 |                |               |       | -                |          |                     |                                 |      |                  |          |                                  |        |                    |     |             |
| 10                          |                                                                |                 |                |               |       |                  |          |                     |                                 |      |                  |          |                                  |        |                    |     |             |
|                             |                                                                |                 |                |               |       |                  |          |                     |                                 |      |                  |          |                                  | _      |                    |     |             |
|                             |                                                                |                 | C V            |               | _     |                  |          |                     |                                 |      |                  |          | 00                               | _      |                    | -   |             |
| Sampled by:                 | Dol's Roalebeage                                               | /               | 1 ali Da       | lucer         | 2     |                  |          | Rel                 | inqu                            | ishe | Relinquished by: |          | Will Brellice                    |        | . No               | -20 | Time: 08:00 |
| Received by:                | PRINT                                                          | Date:           | NOIS           | Time:         |       |                  |          | Rel                 | nbui                            | ishe | Relinquished by: | ر ا      | /                                |        | Date: 🖉            |     | Time:       |
| Received by:                | J V                                                            | Date:           |                | Time:         |       | V                |          | Rel                 | inqu                            | ishe | Relinquished by: |          |                                  |        | Date:              |     | Time:       |
| Received for Laboratory by: | oratory by: Chu VMM                                            | Ver             |                | Date:         | h     | H                | , 10     | oc                  |                                 | н    | Time: 👀          | 8        | 10                               |        |                    |     |             |
| Vas Shipped Con             | Vas Shipped Container intact when received?                    |                 | Yes 🖌          | No            | -     | Init             | Initials | 9                   | S                               | eals | inta             | ct?      | Seals intact? Yes NA No          |        |                    |     |             |
| Nere all samples            | Nere all samples properly preserved? Yes                       | oN 🗡            | Initial        |               | 0     |                  |          |                     |                                 | Sai  | Sample temp.     | ten      | 1p. 41 °C                        |        |                    |     |             |
| Comments:                   | Other = See Above for Sample Preservatives, Field Measurements | nple Preserv    | atives, Fi     | eld Me        | easu  | reme             | nts      |                     |                                 |      |                  |          |                                  |        |                    |     |             |
|                             |                                                                |                 |                |               |       |                  |          |                     |                                 |      |                  |          |                                  |        |                    |     |             |
|                             |                                                                |                 |                |               |       |                  |          |                     |                                 |      |                  |          |                                  |        |                    |     |             |
| - + +                       | and a feature for some                                         | 1 4 m m m m m m | a clame        |               | -4111 | IA/-             | 40       | 1                   | 0.01                            | 203  | 400.             | 3        |                                  |        |                    |     |             |

Put an "X" in the appropriate column for sample type and sample preservative. Write in analysis requested. \* For composite samples include start and stop date and time in comments section \*\*Write in preservative used in comments

#### APPENDIX B

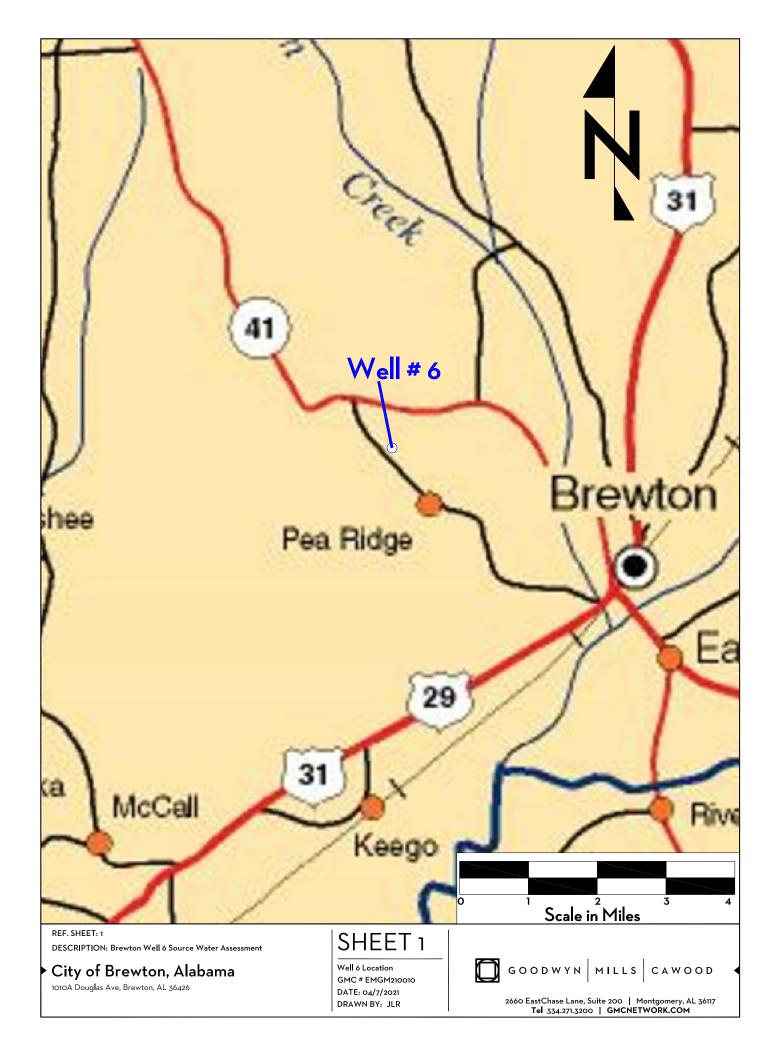
Pump Test Data and Aquifer Test Analysis

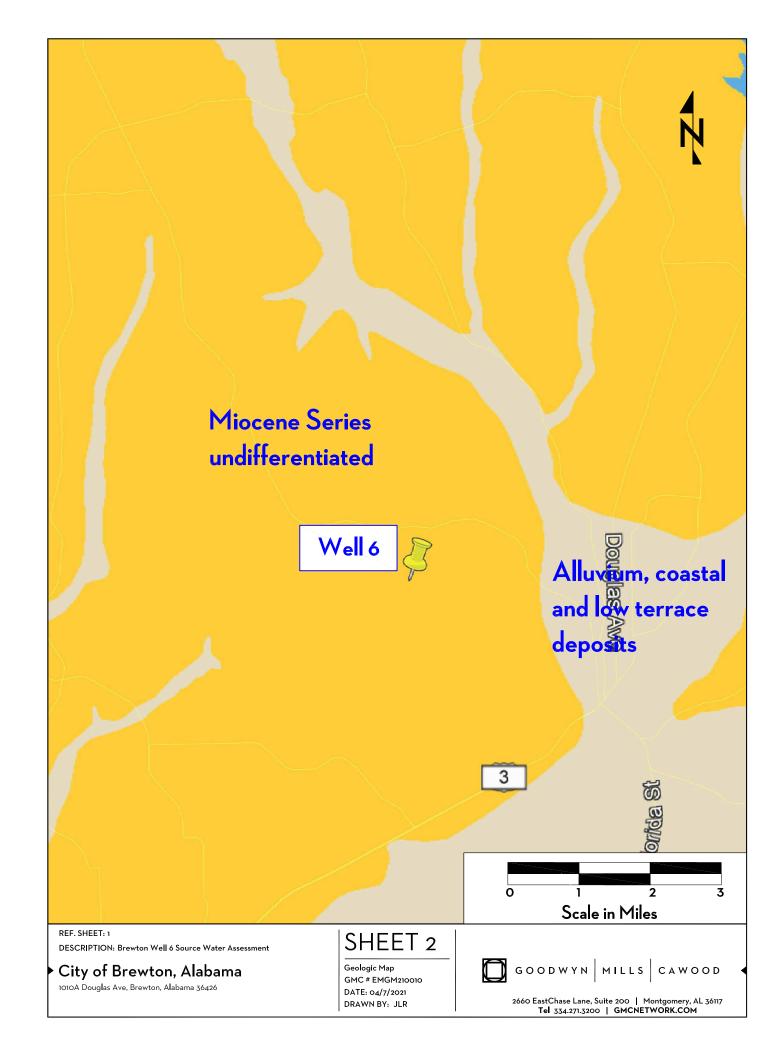

| Page of<br>1<br>Operator | 3               |        | D                                      | onak          | d Sm          | nth         |              | <u></u>     | Job    | Brewton, AL          |                                                 |
|--------------------------|-----------------|--------|----------------------------------------|---------------|---------------|-------------|--------------|-------------|--------|----------------------|-------------------------------------------------|
| CS                       |                 |        |                                        |               | Com           | pany,       | Inc.         |             |        | Pea Ridne Test       | t Pump                                          |
| Date Starled             | 8/12/20         |        | RI. 3. Box 1 • Head                    | land, Alabama | 36345 • (     | 334) 693 29 | 59 • Fax (33 | 4) 693-3089 | Date   | Ended: 8/14/20       | • <u>· · · · · · · · · · · · · · · · · · · </u> |
|                          |                 |        | AQU                                    | <b>HFEF</b>   | ε Ρί          | <b>JMP</b>  | TES          | λ <b>Π</b>  | I I    |                      |                                                 |
|                          | ORIFICE         | GPM    | WÄTER LEVEL<br>SUBM. FT<br>DIRECT FT.I | BRAW          | SPEC,<br>CAP. |             | PSI          | AMPS<br>1 2 | 3<br>3 | VOLTS<br>1/2 1/3 2/3 | COLOA<br>SAND<br>COMMENTS                       |
| 0                        | 0               | 0      |                                        | 0             | 0             | 124.8       | 0            | 0 0         | 0      |                      | Static<br>New Well                              |
| 1 M                      |                 |        |                                        |               |               |             |              |             |        |                      |                                                 |
| 2 M                      |                 | 1000   |                                        | 82.5          | 12.12         | 207.3       |              |             |        |                      |                                                 |
| 3 M                      |                 | 1000   |                                        | 91.3          | 10.95         | 216.1       |              |             |        |                      |                                                 |
| 4 M                      |                 | 1000   |                                        | 93.1          | 10.74         | 217.9       |              |             |        |                      | ********                                        |
| 5 M                      |                 | 1000   |                                        | 93.8          | 10.66         | 218.6       |              | · · ·       |        |                      |                                                 |
| 6 M                      |                 | 1000   |                                        | 94.8          | 10.55         | 219.6       |              |             |        |                      |                                                 |
| 7 M                      |                 | 1000   |                                        | 96.5          | 10.36         | 221.3       |              |             |        |                      |                                                 |
| 8 M                      |                 | 1000   |                                        | 97.9          | 10.21         | 222.7       |              |             |        |                      |                                                 |
| 9 M                      |                 | 1000   |                                        | 98.4          | 10.16         | 223.2       |              |             |        |                      |                                                 |
| 10 M                     |                 | 1000   |                                        | 98.7          | 10.13         | 223.5       |              |             |        |                      |                                                 |
| 12 M                     |                 | 1000   |                                        | 97.3          | 10.28         | ,<br>222.1  |              |             |        |                      |                                                 |
| 14 M                     |                 | 1000   |                                        | 97.6          | 10.25         | 222.4       |              |             |        |                      |                                                 |
| 16 M                     |                 | 1000   |                                        | 97.9          | 10.21         | 222.7       |              |             |        |                      |                                                 |
| 18 M                     |                 | 1000   |                                        | 98.2          | 10.18         | 223         |              |             |        |                      |                                                 |
| 20 M                     |                 | 1000   |                                        | 98.4          | 10.16         | 223.2       | -            |             |        |                      |                                                 |
| 25 M                     |                 | 1000   |                                        | 99.5          | 10.05         | 224.3       |              |             |        |                      |                                                 |
| 30 M                     |                 | 1000   |                                        | 101           | 9.901         | 225.8       |              |             |        |                      |                                                 |
| 40 M                     |                 | 1000   |                                        | 101.8         | 9.823         | 226.6       |              |             |        |                      |                                                 |
| 50 M                     |                 | 1000   |                                        | 102           | 9.804         | 226.8       |              |             |        |                      |                                                 |
| 1.0 HR                   |                 | 1000   |                                        | 102.3         | 9.775         | 227.1       |              |             |        |                      | **************************************          |
| 1.5 HR                   |                 | 1000   |                                        | 102.7         | 9.737         | 227.5       |              |             |        |                      |                                                 |
| 2.0 HR                   |                 | 1000   |                                        | 103.6         | 9.653         | 228.4       |              |             |        |                      |                                                 |
| 2.5 HR                   |                 | 1000   | <u> </u>                               | 105.5         | 9.479         | 230.3       |              |             |        | <u></u>              |                                                 |
| New Airline Gau          |                 |        | 0 - <u>230</u> Ft.                     | Record Water  |               |             | Start:       | Middle:     |        | End: of test.        |                                                 |
| New PSI Gauge            |                 |        | 9 0- <u>100</u> PSI                    | Comments:     | Namep         | late amps   | : 338        |             |        |                      |                                                 |
| Airline Length:<br>Tank  | % Full at Stati | Ft.    |                                        |               |               |             |              |             | · · ·  |                      | · · · · · · · · · · · · · · · · · · ·           |
| Tank                     | _% Full at Ma   |        | #                                      |               |               |             |              |             | I      | Approved Put         |                                                 |
| at IN                    |                 | ^ 「 ジI | #                                      |               |               |             |              |             |        | Approved By:         |                                                 |

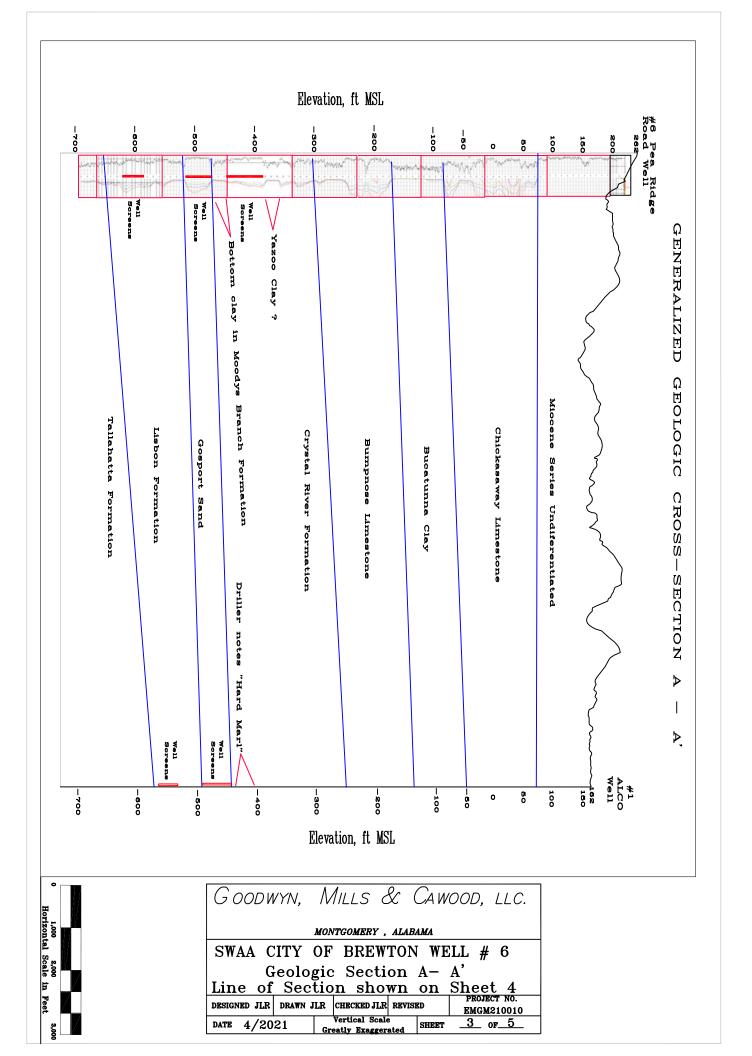
| Page 2 of<br>Operator | 3       |      | D                      | onalo        | l Smi  | ith           |      |             | Job:<br>Well # | Brewton, AL                            |                           |
|-----------------------|---------|------|------------------------|--------------|--------|---------------|------|-------------|----------------|----------------------------------------|---------------------------|
| CS<br>Date Starled    |         |      | Ril. 9, Box 1 + Head   | 100 d'abama  | Comp   | any,          | Inc. | 0 600 6000  |                | Pea Ridge, Test                        | Pump                      |
|                       | 8/12/20 |      |                        | IFER         |        |               |      |             |                | 0/14/20                                |                           |
| LAPSED                |         | GPM  | WÄTER LEVEL<br>SUBM FT | BRAW<br>BOWN |        | PUMP<br>LEVEL | PSI  | AMPS<br>1 2 | 3<br>3         | VOLTS<br>1/2 1/3 2/3                   | COLOR<br>SAND<br>COMMENTS |
|                       | 0       | 0    |                        | 0            | 0      | 124.8         | 0    | 0 0         | 0              |                                        |                           |
| 3.0 HR                |         | 1000 |                        | 106.1        | 9.4251 | 230.9         |      |             |                |                                        |                           |
| 3.5 HR                |         | 1000 |                        | 106.6        | 9.3809 | 231.4         |      |             |                |                                        |                           |
| 4.0 HR                |         | 1000 |                        | 106.9        | 9.3545 | 231.7         |      |             |                |                                        |                           |
| 4.5 HR                |         | 1000 |                        | 107.4        | 9.311  | 232.2         |      |             |                |                                        |                           |
| 5.0 HR                |         | 1000 |                        | 107.5        | 9.3023 | 232.3         |      |             |                |                                        |                           |
| 6.0 HR                |         | 1000 |                        | 104.5        | 9.5694 | 229.3         |      |             |                |                                        |                           |
| 7.0 HR                |         | 1000 |                        | 107.5        | 9.3023 | 232.3         |      |             |                |                                        |                           |
| 8.0 HR                |         | 1000 |                        | 107.5        | 9.3023 | 232.3         |      |             |                |                                        |                           |
| 9.0 HR                |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        | ·····                     |
| 10 0 HR               |         | 1000 | · ·                    | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 11.0 HR               |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 12.0 HR               |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 13.0 HR               |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 14.0 HR               |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 15.0 HR               |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 16.0 HR               |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 17.0 HR               |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 18.0 HR               |         | 1000 |                        | 107.6        | 9.2937 | 232.4         |      |             |                |                                        |                           |
| 19.0 HR               |         | 1000 |                        | 107.7        | 9.2851 | 232.5         |      |             | .,             |                                        |                           |
| 20.0 HR               |         | 1000 |                        | 107.7        | 9.2851 | 232.5         |      |             |                |                                        |                           |
| 21.0 HR               |         | 1000 |                        | 107.7        | 9.2851 | 232.5         |      |             |                |                                        |                           |
| 20.0 HR               |         | 1000 |                        | 107.7        | 9.2851 | 232.5         |      |             |                |                                        |                           |
| 21.0 HR               |         | 1000 |                        | 107.7        | 9.2851 | 232.5         |      |             |                |                                        |                           |
| Comments:             |         |      |                        |              |        |               |      |             |                | ······································ |                           |
|                       |         |      | <u> </u>               |              |        |               |      |             |                |                                        |                           |
|                       |         |      |                        |              |        |               |      |             |                |                                        |                           |

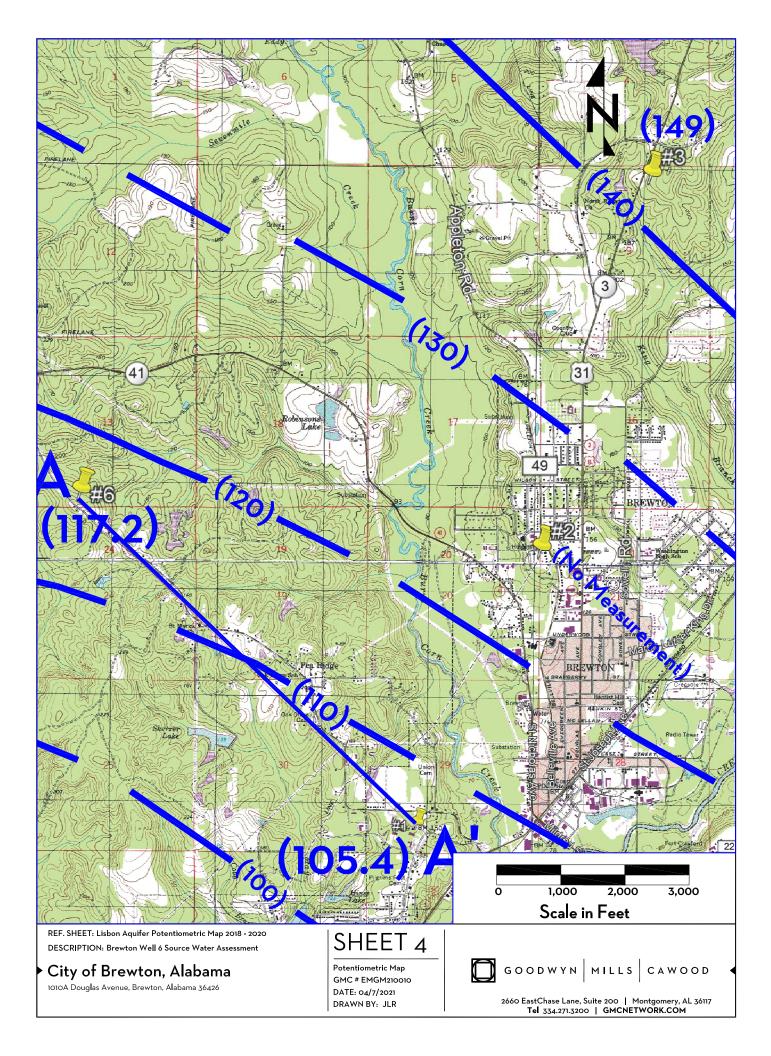
| Page 01            | 3                       |              | -                       | لم الم حر      | • <b>«</b>         |                    |              |             | Job:                                | Brewton, AL                      |                           |
|--------------------|-------------------------|--------------|-------------------------|----------------|--------------------|--------------------|--------------|-------------|-------------------------------------|----------------------------------|---------------------------|
| Operator CS        |                         |              |                         | onald          |                    | i <b>tn</b><br>ank | Inc          | :           | Well #                              | and Location.                    |                           |
| Date Starled       |                         |              | Ril. 3, Box 1 • Headl   | and, Alabama   | <u>36345 • (33</u> | 4) 693-296         | 9 + Fax (334 | 1) 693-3089 | Date E                              | Pea Ridge, Tes<br>Index: 8/14/20 | Pump                      |
| Time Slaned        | 8/12/20                 |              | AQU                     | IFER           | PU                 | MP                 | TES          | T           | !                                   |                                  |                           |
| LAPSED             | OBIFICE<br>TUBE - PLATE | GPM          | WÄTER LEVEL<br>SUBM. FT | DRAW<br>DOWN   | SPEC.<br>CAP.      |                    | PSI          | AMPS<br>1 2 | 3<br>3                              | VOLTS<br>1/2 1/3 2/3             | COLOR<br>SAND<br>COMMENTS |
|                    | 0                       | 0            |                         | 0              | 0                  | 124.8              | 0            | 0 0         |                                     |                                  |                           |
| 22.0 HR            |                         | 1000         |                         | 107.7          | 9.2851             | 232.5              |              |             |                                     |                                  |                           |
| 23.0 HR            |                         | 1000         |                         | 107.7          | 9.2851             | 232.5              |              |             |                                     |                                  |                           |
| 24.0 HR            |                         | 1000         |                         | 107.7          | 9.2851             | 232.5              | -            |             |                                     |                                  |                           |
| 25.0 HR            |                         | 1000         |                         | 107.7          | 9.2851             | 232.5              |              |             |                                     |                                  |                           |
| 26.0 HR            |                         | 1000         |                         | 107.7          | 9.2851             | 232.5              |              |             |                                     |                                  |                           |
| 27.0 HR            |                         | 1000         |                         | 107.7          | 9.2851             | 232.5              |              |             |                                     |                                  |                           |
| 28.0 HR            |                         | 1000         |                         | 107.7          | 9.2851             | 232.5              |              |             |                                     |                                  |                           |
| 29 0 HR            |                         | 1000         |                         | 107.7          | 9.2851             | 232.5              |              |             |                                     |                                  |                           |
| 30.0 HR            |                         | 1500         |                         | 169.9          | 8.8287             | 294.7              |              |             |                                     |                                  |                           |
| 31 0 HR            |                         | 1500         |                         | 171.3          | 8.7566             |                    |              |             |                                     |                                  |                           |
| 32.0 HR            |                         | 1500         |                         | 171.4          | 8.7515             |                    |              |             |                                     |                                  |                           |
| 33.0 HR            |                         | 1500         |                         | 171.4          | 8.7515             |                    |              | :<br>       |                                     |                                  |                           |
| 34.0 HR<br>35.0 HR |                         | 1500<br>1500 |                         | 171.4<br>171.4 | 8.7515<br>8.7515   |                    |              |             |                                     |                                  |                           |
| 36.0 HR            |                         | 1500         |                         | 171.4          | 8.7515             |                    |              | [           | · · · · · · · · · · · · · · · · · · |                                  |                           |
| 37.0 HR            |                         | 1500         |                         | 171.4          | 8.7515             |                    |              |             |                                     |                                  |                           |
| 38.0 HR            |                         | 1500         |                         | 171.4          | 8.7515             |                    |              |             |                                     |                                  |                           |
|                    |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |
|                    |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |
|                    |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |
|                    | ļ                       |              | <br>                    |                |                    |                    |              |             |                                     |                                  |                           |
|                    |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |
|                    |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |
| Comments:          |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |
|                    |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |
|                    |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |
|                    |                         |              |                         |                |                    |                    |              |             |                                     |                                  |                           |

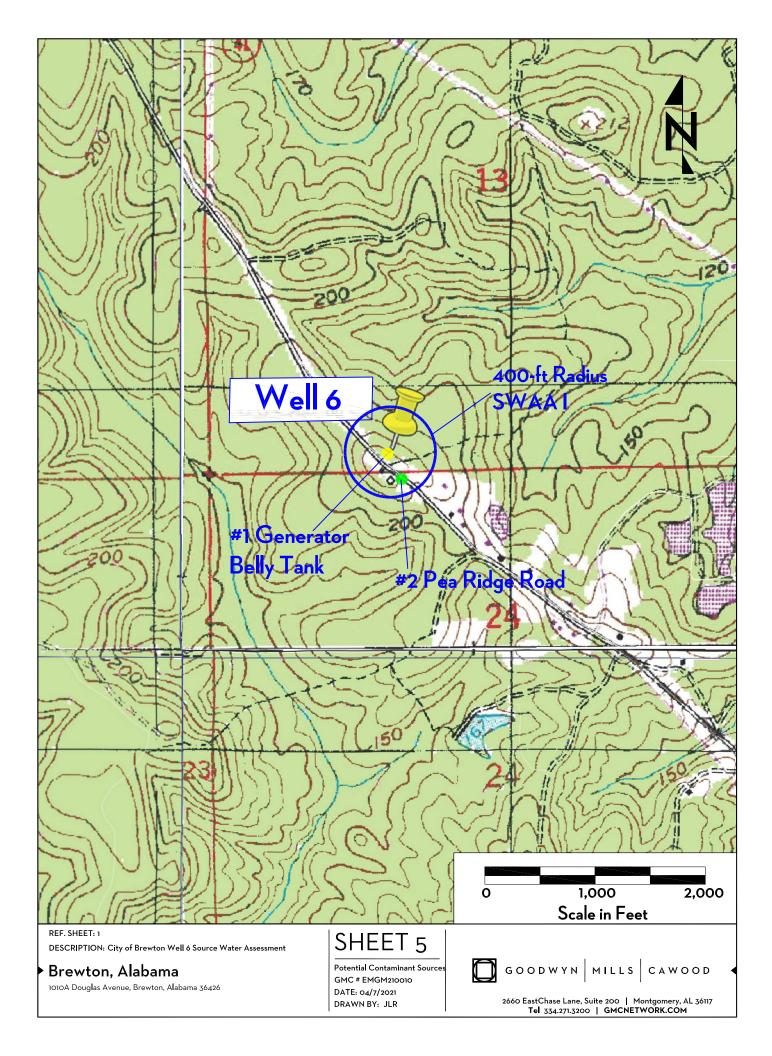
| таун ол<br>1<br>Operator | 2                                    | _              | Donald S       | mith                      |                                                                   | Brewton, AL           |
|--------------------------|--------------------------------------|----------------|----------------|---------------------------|-------------------------------------------------------------------|-----------------------|
| C                        | S/DS                                 |                | Col            | <b>mpany, i</b> nc.       |                                                                   | Pea Ridge, TP         |
| Date Started:            | 8/14/20                              |                |                | 45 • (334) 693-2969 • F   |                                                                   | Date Ended<br>8/14/20 |
| Time Started:            |                                      |                | UIFER F        | RECOVE                    | RY                                                                | Time Ended:           |
| LAPSED<br>TIME           | WATER LEVEL<br>SUBM, FT<br>DIRECT FT | WATER<br>LEVEL | RECOVERY<br>FT | CUMULATIVE<br>RECOVERY FT |                                                                   | COMMENTS              |
| 0                        |                                      | 296.2          | *              | *                         | ·····                                                             |                       |
| <u>1 M</u>               |                                      | 184.6          | 111.6          | 111.6                     |                                                                   |                       |
| 2 M                      |                                      | 172.8          | 11.8           | 123.4                     |                                                                   |                       |
| 3 M                      |                                      | 163.4          | 9.4            | 132.8                     |                                                                   |                       |
| 4 M                      |                                      | 155.3          | 8.1            | 140.9                     |                                                                   |                       |
| 5 M                      |                                      | 152.8          | 2.5            | 143.4                     |                                                                   |                       |
| <u>6 M</u>               |                                      | 149.7          | 3.1            | 146.5                     |                                                                   |                       |
| 7 M                      |                                      | 146.9          | 2.8            | 149.3                     |                                                                   |                       |
| <u>8 M</u>               |                                      | 144.5          | 2.4            | 151.7                     |                                                                   |                       |
| 9 M                      | 1                                    | 142.3          | 2.2            | 153.9                     |                                                                   |                       |
| 10 M                     |                                      | 140.3          | 2              | 155.9                     |                                                                   |                       |
| 12 M                     |                                      | 138.8          | 1.5            | 157.4                     |                                                                   |                       |
| 14 M                     |                                      | 137.7          | 1.1            | 158.5                     |                                                                   | ······                |
| 16 M                     |                                      | 136.5          | 1.2            | 159.7                     |                                                                   |                       |
| 18 M                     |                                      | 135.3          | 1.2            | 160.9                     |                                                                   |                       |
| 20 M                     |                                      | 134.2          | 1.1            | 162                       |                                                                   |                       |
| 25 M                     |                                      | 132.7          | 1.5            | 163.5                     |                                                                   |                       |
| 30 M                     |                                      | 131.4          | 1.3            | 164.8                     |                                                                   |                       |
| 45 M                     |                                      | 130.5          | 0.9            | 165.7                     |                                                                   | ······                |
| 1.0 HR                   |                                      | 129.8          | 0.7            | 166.4                     | <u></u>                                                           |                       |
| 1.5 HR                   |                                      | 128.9          | 0.9            | 167.3                     |                                                                   |                       |
| 2.0 HR                   |                                      | 128.3          | 0.6            | 167.9                     |                                                                   |                       |
| 2.5 HR                   |                                      | 127.9          | 0.4            | 168.3                     | - <sup>14</sup> 18 <b>-</b> 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 |                       |
| 3.0 HR                   |                                      | 127.6          | 0.3            | 168.6                     |                                                                   |                       |
| 3.5 HR                   |                                      | 127.2          | 0.4            | 169                       |                                                                   |                       |
| 4.0 HR                   |                                      | 126.9          | 0.3            | 169.3                     |                                                                   |                       |
| 4.5 HR                   | ļ                                    | 126.5          | 0.4            | 169.7                     |                                                                   |                       |
| 5.0 HR                   |                                      | 126.1          | 0.4            | 170.1                     |                                                                   | <u></u>               |


| г <del>ады о</del><br>2 | 2                       |                                                                       | Donald S                                                                                                             | mith                                  |                                         | Brewton, AL                           |
|-------------------------|-------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|
| Operator<br>CS          | S/DS                    |                                                                       | Co                                                                                                                   | mpany, Inc                            |                                         | Well # and Location:<br>Pea Ridge, TP |
| Date Started:           | 8/14/20                 | 746 E. Main St. • H                                                   | eadland, Alabama 363                                                                                                 | 45 • (334) 693-2969 • F               | ax (334) 693-3089                       | Date Ended<br>8/14/20                 |
| Time Started:           |                         |                                                                       | UIFER F                                                                                                              | RECOVE                                | RY                                      | Time Ended:                           |
| LAPSED<br>TIME          | WATER LEVEL<br>SUBM. FT | WATER<br>LEVEL                                                        | RECOVERY<br>FT                                                                                                       |                                       |                                         | COMMENTS                              |
| 0                       |                         | 296.2                                                                 | *                                                                                                                    | *                                     |                                         |                                       |
| 6.0 HR                  |                         | 125.8                                                                 | 0.3                                                                                                                  | 170.4                                 |                                         |                                       |
| 7.0 HR                  |                         | 125.6                                                                 | 0.2                                                                                                                  | 170.6                                 |                                         |                                       |
| 8.0 HR                  |                         | 125.5                                                                 | 0.1                                                                                                                  | 170.7                                 |                                         |                                       |
| 9.0 HR                  |                         | 125.3                                                                 | 0.2                                                                                                                  | 170.9                                 |                                         |                                       |
| 10.0 HR                 |                         | 125.2                                                                 | 0.1                                                                                                                  | 171                                   | A                                       |                                       |
| 11.0 HR                 |                         | 125.1                                                                 | 0.1                                                                                                                  | 171.1                                 |                                         |                                       |
| 12.0 HR                 | <br>                    | 125                                                                   | 0.1                                                                                                                  | 171.2                                 |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       | ****                                    |                                       |
|                         |                         | ·····                                                                 |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       | *************************************** |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
| <br>                    |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         | · · · · · ·             |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         | une did bland is "is thick in the late of a number of a second second |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      | · · · · · · · · · · · · · · · · · · · |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |
|                         |                         |                                                                       | Hannach volan alle a de a de la d<br>L |                                       |                                         |                                       |
|                         |                         |                                                                       |                                                                                                                      |                                       |                                         |                                       |





#### APPENDIX C


Community System Susceptibility Analysis Sheet


|                |               |                   | Comm           | unity System S  | usceptibility An                       | alysis Shee      | t                    |          |                     |
|----------------|---------------|-------------------|----------------|-----------------|----------------------------------------|------------------|----------------------|----------|---------------------|
| Syst           | tem Name:     | Water Works Boa   | ard City of    | Brewton         |                                        | Raw S            | ource ID:            | 6        |                     |
| P              | WSID #:       | A                 | L000055        | 5               |                                        |                  |                      |          |                     |
| 0              | County:       | E                 | Escambia       | a               |                                        |                  |                      |          |                     |
|                | Date:         |                   | 4/8/2021       |                 |                                        |                  |                      |          |                     |
|                |               | Source Owner Name |                |                 |                                        |                  |                      |          |                     |
| Source<br>ID # | Latitude      | Longitude         | Source<br>Type | Owner Name      | Owner Address                          | Owner<br>Phone # | Contaminant<br>Names | Ranking  | Comment             |
| 1              | 31° 07' 48.2" | 87° 07' 07.9"     | 63             | Brewton WWB     | 1010A Douglas Ave<br>Brewton, AL 36426 | 251-809-1783     | Petroleum            | Moderate | Generator Bell Tank |
| 2              | N/A           | N/A               | 55             | Escambia County | P.O. Box 848 Brewton,<br>AL 36427      | 251-867-0236     | Various              | Low      | Transportation      |









